Skeletal System: Articulations
(Chapter 9)
Lecture Materials
for
Amy Warenda Czura, Ph.D.
Suffolk County Community College
Eastern Campus

Primary Sources for figures and content:

Articulation = joint; site where two or more bones meet
- function: connect bones together but provide mobility in skeleton

Anatomical/Structural Classification of Joints:
(based on connecting material)
1. **Fibrous**: bones joined by fibrous CT with no space
2. **Cartilaginous**: bones joined by pad or bridge of cartilage
3. **Synovial**: bones separated by fluid-filled cavity, surrounded by CT

Physiological/Functional Classification of Joints:
(based on amount of movement)
1. Synarthrosis: immovable joint
 (fibrous or cartilaginous)
2. Amphiarthrosis: slightly moveable joint
 (fibrous or cartilaginous)
3. Diarthrosis: freely moveable joint
 (always synovial)

Increased mobility = decreased stability

Synarthroses: immovable, strength
1. **Synostosis**: fused bones
2. **Suture**: interlocked bones, sealed with dense CT
3. **Gomphosis**: tooth in alveolar socket, held by periodontal ligament
4. **Synchondrosis**: hyaline cartilage bridge between bones

Amphiarthroses: slightly moveable, strength with some mobility
1. **Syndesmosis**: bones connected by ligament ligament = band of dense regular CT
2. **Sympysis**: bones separated by pad of fibrocartilage

Diarthroses = Synovial Joint: great mobility, less strength and stability

Features (on handout)
Joint Injuries
Sprain - damage to ligament, some collagen torn, slow to heal
Bursitis - inflammation of a bursa due to trauma, infection, or repetitive motion

*synovial joints stabilized by articular capsule and accessory structures to restrict mobility: ↑mobility = ↓stability = ↑chance of dislocation
Luxation = dislocation; joint displacement, usually damages cartilage, ligaments, and capsule, pain receptors in all CT of the joint, except articular cartilage, to prevent actions
Subluxation = partial dislocation; displacement beyond usual anatomical limitation, “double jointed”

Movements at synovial joints
1. Linear movements
 - Gliding: slight movement in any direction
2. Angular movements: one plane of motion
 - Flexion: reduce angle in frontal plane
 - Extension: increase angle in frontal plane
 - Hyperextension: extension past anatomical position
 - Abduction: move away from longitudinal axis in sagittal plane
 - Adduction: move toward longitudinal axis in sagittal plane
 - Circumduction: move in loop without rotation
3. Rotational movements; turn on axis
 - medial rotation: turn in toward body
 - lateral rotation: turn out away from body

Special and Specific Motion:
- Inversion: turn sole inward
- Eversion: turn sole outward
- Dorsiflexion: lift toes
- Plantar flexion: lift heal
- Opposition: thumb across palm
- Pronation: medial rotation of radius
- Supination: lateral rotation of radius
- Protraction: move anterior
- Retraction: move posterior
- Elevation: move superior
- Depression: move inferior

Ranges of Motion
1. Monaxial: movement in 1 plane
2. Biaxial: movement in 2 planes
3. Triaxial: movement in 3 planes
4. Multiaxial: gliding joints, all directions

Types of Synovial Joints (handout)
1. Gliding/Plane Joint: flat surfaces, slide in any direction
 ![Gliding joint](image1)
 ![Eight synovial or multiaxial joints](image2)
 ![Acromioclavicular and gleno-humeral joints](image3)
 ![Intercarpal and interveretal joints](image4)
 ![Carpometacarpal joints](image5)
 ![Distal interphalangeal joint](image6)

2. Hinge Joint: cylindrical projection in trough-shaped surface
 ![Hinge joint](image7)
 ![Hinge joint](image8)
 ![Elbow joint](image9)
 ![Trapezium joint](image10)
 ![Ankle joint](image11)
 ![Interarticular joint](image12)

3. Pivot Joint: round projection in ring shaped depression
 ![Pivot joint](image13)
 ![Pivot joint](image14)
 ![Pivot joint](image15)
 ![Pivot joint](image16)
4. Ellipsoidal joint: oval facet in oval depression

<table>
<thead>
<tr>
<th>Type of Spherical Joints</th>
<th>Movement</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipsoidal joint</td>
<td>Revolved</td>
<td>• Humerocarpal joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Humeroradial joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Metacarpophalangeal joints 2-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interphalangeal joints</td>
</tr>
</tbody>
</table>

5. Saddle joint: concave surface into convex surface

6. Ball and socket joint: spherical head into cup-like socket

Age Related Changes:

Rheumatism = pain and stiffness of skeletal system

Arthritis = rheumatism of synovial joints, caused by damage to articular cartilage
- **osteoarthritis** = age 60+, cumulative wear and tear erodes cartilage
- **rheumatoid arthritis** = autoimmune attack, chronic inflammation and damage to joint
 - **Ankylosis** = ossification of the joint due to untreated RA
- **gouty arthritis** = crystals of uric acid from nucleic acid metabolism form in synovial fluid, damage cartilage