Chapter 19 Blood Lecture Outline

Cardiovascular system
Circulatory system
Blood
Functions:
 1. distribution
 2. regulation
 3. protection
Characteristics:
 pH 7.4
 38°C
 4-6 L
Composition:
 Plasma
 Formed elements
 Erythrocytes
 Leukocytes
 Platelets / Thrombocytes

Plasma
 Water + solutes
 Proteins
 1. Albumins
 2. Globulins
 a. Gamma globulins / immunoglobulins / Antibodies
 b. Alpha & Beta globulins / Transport globulins
 3. Clotting proteins
 Fibrinogen
 Serum
 4. Other
 Metabolic enzymes
 Antibacterial proteins
 Hormones

Hematopoiesis
 Hemocytoblast
 Myeloid stem cell
 Progenitor cells
 Erythrocyte
 Megakaryocyte
 Platelet
 Granulocytes:
 Basophils,
 Eosinophils
 Neutrophils
 Monocytes → Macrophages

Lyphoid stem cell
 Lymphocytes
Erythrocytes
 Hematocrit
 Polycythemia
 Hemoglobin (Hb)
 2 α + 2 β chains
 heme
 oxyhemoglobin
deoxyhemoglobin
carboxyhemoglobin
Anemia
 Thalassemia
 Sickle-cell anemia
Erythropoiesis
 Hemocytoblast
 Myeloid stem cell
 Reticulocyte
 Vitamin B12
 Erythropoietin (EPO)
 blood doping
Erythrocyte recycling
 Transferrin
 Biliverdin
 Bilirubin
 Jaundice
 Urobilins
 Stercobilins
 Hemolysis
 Hemoglobinuria

Blood types
 Type A: A antigen, B antibody
 Type B: B antigen, A antibody
 Type AB: A&B antigens, no antibodies
 Type O: no antigen, A&B antibodies
 Rh+: D antigen
 Rh-: no antigen
 Agglutination
 Erythroblastosis fetalis

Leukocytes
Functions:
 defense
 detoxification
 removal of cells
Characteristics:
 1. amoeboid movement
 2. diapedesis
 3. migration
 4. emigration
 5. chemotaxis
 6. phagocytosis
Types:
 Granulocytes
 Neutrophils (PMNs)
 respiratory burst
degranulation: defensins
prostaglandins
leukotrienes
Eosinophils
 parasite defense
 Basophils / Mast cells
 histamine
 heparin
Agranulocytes
Monocytes / Macrophages
phagocytosis
chemoattractant
Lymphocytes
B cells: humoral immunity
T cells: cell mediated immunity
NK cells: immune surveillance

Leukopoiesis
Hemocytoblast
Myeloid stem cell
Basophil
Eosinophil
Neutrophil
Monocyte
CSF (colony stimulating factor)
Lymphoid stem cell
Lymphocyte
Leukopenia
Leukocytosis
Infection mononucleosis
Epstein Bar virus

Platelets / Thrombocytes
Functions:
Clotting chemicals
Platelet plug
Contraction
Thrombocytopoiesis
Hemocytoblast
Megakaryocyte
Thrombopoietin
Thrombocytopenia
Thrombocytosis

Hemostasis
1. Vascular spasms
 vasoconstriction
 endothelins
 von Willebrand factor
2. Platelet plug
 platelet adhesion
 platelet aggregation
 secretion
 ADP
 thromboxane & serotonin
 clotting factors
 PDGF
 calcium ions
 prostacyclin
3. Coagulation
 a. Prothrombinase formation
 b. Thrombin formation
 c. Fibrin formation
Clotting cascade (coagulation)
Extrinsic pathway
 Tissue factor (Factor III) + Factor VII + Ca^{2+}
Intrinsic pathway

Factor XII
Factor VIII + Factor IX
Common pathway
Factor X → Prothrombinase
Prothrombin → Thrombin
Fibrinogen → Fibrin

Fibrinolysis
Throbin
Tissue plasminogen activator
Plasminogen → Plasmin

Clotting prevention:
Antithrobin III
Heparin
Protein C
Prostacyclin

Disorders
Thrombosis
Embolus
Disseminated intravascular coagulation
Hemophilia
 Type A: Factor VIII
 Type B: Factor IX
 Type C: Factor XI
Calcium deficiency: clotting
Vitamin K deficiency: clotting
Iron deficiency: erythrocytes
Vitamin B12 deficiency: erythrocytes
Liver disorder: clotting factors
Kidney disorder: EPO, thrombopoietin

Amy Warenda Czura, Ph.D.

SCCC BIO132 Chapter 19 Handout
Hematopoiesis: Blood Cell Production

Basophils, Eosinophils, Neutrophils and platelets exit the bone marrow to blood as mature cells.

Monocytes must mature into Macrophages by migrating from the blood to the peripheral tissues.

Many lymphoid stem cells migrate from the bone marrow to lymphoid tissues to produce mature lymphocytes there.

Erythrocytes enter the blood as reticulocytes which mature in the blood stream.
<table>
<thead>
<tr>
<th>Granulocytes</th>
<th>Agranulocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil (a.k.a PMNs)</td>
<td>Monocyte</td>
</tr>
<tr>
<td>Non-specific defense</td>
<td>In tissues = Macrophage</td>
</tr>
<tr>
<td>Phagocytic</td>
<td></td>
</tr>
<tr>
<td>50-70%</td>
<td></td>
</tr>
<tr>
<td>3-5 lobed nucleus</td>
<td></td>
</tr>
<tr>
<td>12µm</td>
<td></td>
</tr>
<tr>
<td>Granules contain enzymes and defensins</td>
<td></td>
</tr>
<tr>
<td>Very mobile</td>
<td></td>
</tr>
<tr>
<td>Life span less than 10 h</td>
<td></td>
</tr>
<tr>
<td>Functions:</td>
<td></td>
</tr>
<tr>
<td>Respiratory burst</td>
<td></td>
</tr>
<tr>
<td>Degranulation</td>
<td></td>
</tr>
<tr>
<td>Prostaglandins</td>
<td></td>
</tr>
<tr>
<td>Leukotrienes</td>
<td></td>
</tr>
</tbody>
</table>

Eosinophil	
Non-specific defense	
Phagocytic	
2-4%	
Bilobed nucleus	
12µm	
Granules contain toxins	
Life span 9 d	
Functions:	
Phagocytosis of Ab covered	
Defense against parasites	
Reduce inflammation	

Basophil	
Non-specific defense	
Less than 1%	
“U” shaped nucleus	
8-10µm	
Granules contain	
Histamine	
Heparin	
Life span 9 d	
Functions:	
Inflammation	
Allergic response	

Lymphocyte	
Immune response	
20-30%	
Large round nucleus	
5-17µm	
Migratory	
Most in lymphatic	
Life span days-lifetime	
Function depends on type	
3 types:	
B cells: humoral immunity	
T cells: cell-mediated immunity	
NK cells: immune surveillance	
Hemostasis “stop bleeding”

Three phases:

1.) Vascular spasms - begins immediately after injury
 Vasoconstriction of the vessels involved in the injury
 Triggered by:
 - injury to the vessel
 - chemicals from damaged endothelial cells
 - reflex triggered by pain receptors
 Concurrently, endothelial cells release factors and hormones:
 - Endothelins: stimulate vascular spasms and cell division to begin repair
 - von Willebrand Factor: promotes platelet sticking to endothelium

2.) Platelet phase - begins 15 sec post injury
 Platelet adhesion – platelets stick to endothelium
 Platelet aggregation – platelets stick to each other forming a “platelet plug”
 Platelets activated by thrombin secrete:
 - ADP: stimulates platelet aggregation and secretion
 - thromboxane: stimulates vascular spasm and chemo-attract platelets
 - serotonin: stimulates vascular spasm
 - clotting factors (5 of the 11 proteins): act in clotting cascade
 - Platelet Derived Growth Factor (PDGF): promote vessel repair
 - calcium ions: required for aggregation and clotting
 *This sets up a positive feedback loop
 Platelet plug size is controlled by prostacyclin released by endothelial cells: it inhibits platelet aggregation.

3.) Coagulation - begins 30 sec post injury
 Multistep process, three important steps:
 1. Prothrombinase is formed from clotting factors
 2. Prothrombinase converts prothrombin to thrombin
 3. Thrombin converts fibrinogen into fibrin which forms a mesh to plug the hole
 (blood “clot” = big mesh of fibrin: cells will later get trapped in it making it appear red)
Clotting Cascade (events for coagulation)

Consists of calcium ions plus 11 proteins that each function as an enzyme to activate the next protein in a controlled series. 5 of the 11 clotting factors are released by activated platelets and/or endothelial cells, the remaining 6 are always present in the blood as plasma proteins produced by the liver.

Two methods to initiate clotting:

Extrinsic Pathway
- (fast, initiated by factors outside bloodstream)
- (only occurs in body)

Intrinsic Pathway
- (slow, initiated by factors present in blood)
- (can occur in a test tube)

Factor III / Tissue Factor
released by damaged endothelial cells
(or other tissue, or activated platelets)

+

Factor VII + Ca$^{2+}$

↓

Common Pathway

Factor X is activated → prothrombinase

↓

prothrombin → thrombin

↓

fibrinogen → fibrin

Fibrin forms a web that traps blood cells and platelets to seal off the wound. Thrombin has positive feedback activity on both extrinsic and intrinsic pathways and both work together to form a strong clot.

30-60 min post injury:

- clot retraction occurs to reduce wound size
- PDGF stimulates cell division to promote repair

After healing has occurred:

Fibrinolysis: clot is dissolved

- thrombin (common pathway) and tissue plasminogen activator (TPA from damaged tissue) activate plasminogen (in blood) to form plasmin which digests fibrin

Blood clotting normally prevented by:

1. anticoagulants in blood that inhibit clotting factors (e.g. Antithrombin III inactivates thrombin)
2. Heparin from basophils and endothelial cells activates Antithrombin III
3. Protein C from liver stimulates plasmin to digest fibrin
4. Prostacyclin from endothelial cells prevents platelet aggregation