Chapter 21 Blood Vessels and Circulation Lecture Outline

Vessels
1. Arteries
2. Arterioles
3. Capillaries
4. Venules
5. Veins
6. Anastomoses

Wall structure
1. Tunica intima
 Endothelium
 Internal elastic membrane
2. Tunica media
 External elastic membrane
3. Tunica externa
 Vasa vasorum

Arteries vs. Veins

Arteries
1. Elastic arteries
2. Muscular arteries
 pressure points
3. Arterioles
 Vasoconstriction
 Vasodilation

Problems:
 Aneurysm
 Arteriosclerosis
 Focal calcification
 Atherosclerosis
 CVA (stroke)

Capillaries
1. Continuous capillaries
2. Fenestrated capillaries
3. Sinusoids

Capillary beds
 Precapillary sphincter
 Vasomotion

Veins
1. Venules
2. Medium veins
3. Large veins

Venous valves

Problems:
 Varicose veins
 Hemorrhoids

Anastomoses

Circulation
Blood flow
Blood pressure
Resistance
Vasoconstriction
Vasodilation

Systemic blood pressure
Systolic
Diastolic
Hypertension

Capillary exchange
Filtration
 blood hydrostatic pressure
Diffusion
Edema

Cardiovascular regulation
1. Autoregulation
 Local vasodilators:
 ↑ CO₂ ↓ O₂
 lactic acid
 ↑ K⁺ or H⁺
 inflammation: histamine, NO
 ↑ temperature
 Local vasoconstrictors
 prostaglandins
 thromboxane
 endothelins

2. Neural
 A. Cardiovascular centers
 1. Cardiac centers
 Acceleratory: sympathetic
 Inhibitory: parasympathetic
 2. Vasomotor centers: sympathetic
 NE
 B. Reflexes
 1. Baroreceptor reflexes
 2. Chemoreceptor reflexes

3. Hormonal
 A. Antidiuretic hormone (ADH)
 B. Angiotensin II
 C. Erythropoietin (EPO)
 D. Atrial Natriuretic Peptide (ANP)

Hemorrhaging
1. Short term
 A. ↑ CO
 B. vasoconstrict
 C. NE, ADH, Angiotensin II

2. Long term
 A. fluid recall
 B. ADH
 C. ↑ thirst
 D. EPO

Shock
Circulatory collapse

Aging
↓ hematocrit
↑ thrombus
↓ valve function
↓ max CO
↑ arteriosclerosis
Relationship of blood and lymphatic vessels

Six Main Classes of Blood Vessels:

1. Arteries - carry blood away from heart, branch and decrease in diameter
2. Arterioles - smallest arterial branches, connect to capillaries
3. Capillaries - tiny vessels where diffusion occurs between the blood and interstitial fluid
4. Venules - smallest veins, connect to capillaries
5. Veins - return blood to heart, converge and increase in diameter
6. Anastomoses - bypass connections between vessels
Three main layers or tunics:

1. Tunica intima / tunica interna = inner most layer
 - endothelial cells with basal lamina of loose connective tissue containing elastic fibers (elastin)
 - (endothelium = simple squamous epithelial-like cells connected by tight junctions)
 - in arteries, the outer edge has extra layer of elastic fibers called the internal elastic membrane

2. Tunica media = middle layer
 - smooth muscle cells in loose connective tissue with sheets of elastin
 - in arteries the outer edge has extra layer of elastic fibers called the external elastic membrane

3. Tunica externa / tunica adventitia = outer most layer
 - collagen rich external connective tissue sheath
 - infiltrated with nerve fibers and lymphatic vessels
 - large vessels contain vasa vasorum
 - in arteries there is more collagen and scattered elastic fiber bands
 - in veins there is extensive elastic fiber networks and bundles of smooth muscle cells
Arteries vs Veins Comparison

Arteries
- Thicker walls
- More elastin and smooth muscle in tunica media
- Thickest tunic = tunica media
- Elastic walls recoil constricting lumen without BP
- Circular in cross section
- No valves
- Pleated endothelium
- Internal and external elastic membranes

Veins
- Thinner walls
- Less
- Thickest = tunica externa
- Open lumen, no recoil
- Collapse flat in cross section
- Valves = flaps of tunica intima prevent backflow
- Smooth endothelium
- No elastic membranes

Histology of blood vessels

Images showing different types of blood vessels and their structures.

Source: Amy Warenda Czura, Ph.D.

SCCC BIO132 Chapter 21 Handout
Types of Vessels

Arteries: designed to change diameter, elastic and muscular, thick walls
 Tunica externa contains collagen
 Sympathetic stimulation = vasoconstriction
 Smooth muscle relaxes = vasodilation

1. Elastic arteries a.k.a. conducting arteries
 Transport large volumes away from heart
 Diameter up to 2.5cm
 Elastin in all three tunics
 Stretch (ventricular systole) and rebound (ventricular diastole)
 Not involved in systemic vasoconstriction

2. Muscular arteries a.k.a. distribution arteries
 Transport blood to organs and tissues
 Diameters 10mm-0.3mm
 More smooth muscle and less elastin in tunica media than elastic arteries
 Involved in systemic vasoconstriction via sympathetic stimulation

3. Arterioles a.k.a. resistance vessels
 Connect blood supply to capillary beds
 Diameters 300µm-10µm
 All three tunics thin with few elastic fibers
 Involved in local vasoconstriction via endocrine or sympathetic stimulation

Capillaries: designed to allow diffusion to/from the tissues
 Consist of tunica intima only (endothelium + basal lamina)
 Diameter 8µm

1. Continuous capillaries
 Normal diffusion to all tissues except epithelium and cartilage
 Complete endothelium, tight junctions

2. Fenestrated capillaries
 High volume fluid or large solute transfer
 Pores/fenestrations span endothelium
 e.g. choroid plexus, endocrine organs, intestine, kidney

3. Sinusoids
 Cell or large protein exchange
 Gaps between endothelial cells
 e.g. liver, bone marrow, lymphoid tissues

Organized into capillary beds between arteriole and venule
Controlled by precapillary sphincters: vasomotion
Veins: designed to return blood to heart, can serve as blood reservoir, thin walls but large lumens
 Thin tunica media with little smooth muscle or elastin
 Tunica externa contains elastin and smooth muscle
 Tunica intima contains valves to prevent back-flow

1. Venule
 Collect blood from capillary beds
 Average diameter 20µm (range 8µm –1.5mm)
 Small ones lack tunica media

2. Medium vein
 Diameters 2-9mm

3. Large vein
 Diameters up to 3cm

Anastomoses: bypass routes between vessels
 Not present in retina, kidney, or spleen
 More common in veins
Cardiovascular Regulation

1. Autoregulation
 single capillary bed: action at a precapillary sphincter
 Local vasodilators: (increase blood flow)
 Increased CO₂ or decreased O₂
 Lactic acid
 Increase K⁺ or H⁺
 Inflammation: histamine, NO
 Elevated temperature
 Local vasoconstrictors: (decrease blood flow)
 Prostaglandins
 Thromboxanes
 Endothelins

2. Neural Mechanisms
 A. Cardiovascular centers in medulla oblongata
 Cardiac centers
 Cardioacceleratory center: sympathetic = increase CO
 Cardioinhibitory center: parasympathetic = decrease CO
 Vasomotor centers = sympathetic
 NE = vasoconstriction
 B. Baroreceptor reflexes
 Monitor BP and trigger cardiovascular centers
 C. Chemoreceptor reflexes
 Monitor blood and CSF CO₂, O₂, and pH and trigger respiratory and cardiac centers

3. Hormonal Regulation
 A. Antidiuretic Hormone (ADH)
 From pituitary gland in response to low blood volume
 Causes vasoconstriction and water conservation at kidney
 B. Angiotensin II
 From kidney in response to low BP
 Causes: Na⁺ retention and K⁺ loss at kidney,
 Stimulates release of ADH, Stimulates thirst, Stimulates CO
 Stimulates arteriole constriction
 C. Erythropoietin
 From kidney in response to low O₂
 Stimulates production and maturation of RBCs
 D. Atrial Natriuretic Peptides (ANP)
 From atria in response to stretching
 Causes: Increased Na⁺ and H₂O loss at kidney,
 Reduced thirst
 Blocks ADH release
 Stimulates vasodilation