Chapter 23 The Respiratory System Lecture Outline

Respiratory System
Functions:
1. external respiration
2. pulmonary ventilation
3. protection
4. vocalization
5. olfaction

Upper respiratory system
nose, nasal cavity, sinuses, pharynx

Lower respiratory system
A. Conducting portion
 larynx, trachea, bronchi, bronchioles
B. Respiratory portion
 alveoli

Mucosa
Ciliated pseudostratified columnar epithelium
Goblet cells
Lamina propria
 Mucus glands: mucus
 Serous glands: lysozyme

Defense
1. Mucus
2. Cilia: mucus escalator
 Cystic fibrosis
 Smoking
3. Alveolar macrophages
 Squamous cell carcinoma

Anatomy
Upper respiratory system
1. Nose
 External nares
 Vestibule
2. Nasal cavity
 Nasal septum
 Olfactory epithelium
 Nasal conchae
 Hard & soft palate
 Internal nares
 Epistaxis
 Paranasal sinuses
 frontal, sphenoid, ethmoid, maxillae
 Rhinitis
 Sinus headache
3. Pharynx
 A. Nasopharynx
 Pseudostratified columnar epithelium
 Uvula
 Pharyngeal tonsil
 Auditory tubes
 B. Oropharynx
 Stratified squamous epithelium
 Palatine & lingual tonsils
 C. Laryngopharynx
 Stratified squamous epithelium

Lower respiratory system
4. Larynx
 Hyaline cartilage
 Glottis
 Epiglottis
 Elastic cartilage
 Vocal folds / cords
 Pitch
 Volume
 Phonation
 Speech
 Laryngitis
5. Trachea
 a. Mucosa
 Pseudostratified columnar epithelium
 Goblet cells
 Lamina propria
 Smooth muscle
 Glands
 b. Submucosa
 Mucus glands
 c. Adventitia
 Hyaline cartilage
 Trachealis muscle
6. Primary bronchi & tree
 Lung hilum
 Bronchial tree
 1. less cartilage
 2. more muscle
 3. thin epithelium, less cilia & mucus
7. Terminal bronchiole
 Sympathetic = bronchodilation
 Parasympathetic = bronchoconstriction
 Asthma
 Histamine
 Epinephrine
 Pulmonary lobule
 Respiratory bronchiole
 Alveolar sac
8. Alveoli
 Cells
 a. Type I cells
 Simple squamous epithelium
 b. Type II cells
 Simple cuboidal epithelium
 Surfactant
 c. Alveolar macrophage
 Alveolar pores
 Respiratory membrane
 a. Type I cells
 b. Basal lamina
 c. Endothelial cells
 Pneumonia
 Pulmonary embolism
Lungs: gross anatomy
Right: 3 lobes
Left: 2 lobes
Pleural cavity
Parietal pleura
Visceral pleura
Pleural fluid
Pleurisy
Respiratory physiology
1. Pulmonary ventilation
 Pneumothorax
 Atelectasis
 Boyle’s law
 Diaphragm
 contraction: ↑ volume, ↓ pressure, air in
 relaxation: ↓ volume, ↑ pressure, air out
Factors
 1. Airway resistance
 2. Alveolar surface tension
 Surfactant
 Respiratory distress syndrome
3. Compliance
 A. Connective tissue
 Emphysema
 B. Alveolar expandability
 Collapse
 Edema
 C. Thoracic mobility
Inspiration
 A. Eupnea
 Diaphragm
 External intercostals
 B. Hyperpnea
 Serratus anterior
 Pectoralis minor
 Scalenes
 Sternocleidomastoid
Expiration
 A. Eupnea
 B. Hyperpnea
 Abdominal muscles
Volumes and capacities
 Respiratory cycle
 Resting tidal volume
 Expiratory reserve volume
 Residual volume
 Inspiratory reserve volume
 Vital capacity
 Total lung capacity
 Respiratory rate
 Respiratory minute volume
 Anatomical dead space
 Alveolar ventilation
2. Gas exchange
 Partial pressure
 High altitude sickness
 Decompression sickness
Diffusion
 1. big pressure difference
 2. small distance
 3. lipid soluble
 4. large surface area
 5. coordination
3. Gas transport
 A. Transport of oxygen
 Plasma
 Hemoglobin: heme
 Carbon monoxide poisoning
 Hemoglobin saturation
 1. Bohr effect
 2. Temp
 3. BPG
 4. Pregnancy
 Hypoxia
 B. Carbon dioxide
 1. Carbonic acid
 Carbonic anhydrase
 CO$_2$ + H$_2$O \leftrightarrow H$_2$CO$_3$ \leftrightarrow H$^+$ + HCO$_3^-$
 2. Carbaminohemoglobin
 3. Plasma
Regulation
 1. Autoregulation
 A. Lung perfusion
 B. Alveolar ventilation
 2. Neural
 A. Respiratory rhythmicity centers
 Medulla oblongata
 1. DRG
 diaphragm, internal intercostals
 pace setting
 2. VRG
 accessory muscles
 B. Respiratory centers
 Pons
 1. Apneustic center
 stimulate DRG
 2. Pneumotaxic center
 inhibit apneustic
 C. Reflexes
 1. Chemoreceptors
 2. Baroreceptors
 3. Stretch
 4. Irritant
 5. Other
 Aging
 ↓ compliance ↓ VC
 ↓ mobility ↓ RMV
 ↓ gas exchange
Figure 22.16b: Respiratory volumes and capacities.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Adult male average value</th>
<th>Adult female average value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal volume (TV)</td>
<td>500 ml</td>
<td>500 ml</td>
<td>Amount of air inhaled or exhaled with each breath under resting conditions</td>
</tr>
<tr>
<td>Inspiratory reserve volume (IRV)</td>
<td>3100 ml</td>
<td>1900 ml</td>
<td>Amount of air that can be forcefully inhaled after a normal tidal volume inhalation</td>
</tr>
<tr>
<td>Expiratory reserve volume (ERV)</td>
<td>1200 ml</td>
<td>700 ml</td>
<td>Amount of air that can be forcefully exhaled after a normal tidal volume exhalation</td>
</tr>
<tr>
<td>Residual volume (RV)</td>
<td>1200 ml</td>
<td>1100 ml</td>
<td>Amount of air remaining in the lungs after a forced exhalation</td>
</tr>
<tr>
<td>Total lung capacity (TLC)</td>
<td>6000 ml</td>
<td>4200 ml</td>
<td>Maximum amount of air contained in lungs after a maximum inspiratory effort: TLC = TV + IRV + ERV + RV</td>
</tr>
<tr>
<td>Vital capacity (VC)</td>
<td>4800 ml</td>
<td>3100 ml</td>
<td>Maximum amount of air that can be expired after a maximum inspiratory effort: VC = TV + IRV + ERV (should be 80% TLC)</td>
</tr>
<tr>
<td>Inspiratory capacity (IC)</td>
<td>3600 ml</td>
<td>2400 ml</td>
<td>Maximum amount of air that can be inspired after a normal expiration: IC = TV + IRV</td>
</tr>
<tr>
<td>Functional residual capacity (FRC)</td>
<td>2400 ml</td>
<td>1800 ml</td>
<td>Volume of air remaining in the lungs after a normal tidal volume expiration: FRC = ERV + RV</td>
</tr>
</tbody>
</table>
Regulation of Respiration

Respiratory homeostasis requires that diffusion rates at peripheral capillaries (O\textsubscript{2} in CO\textsubscript{2} out) and alveolar capillaries (CO\textsubscript{2} out O\textsubscript{2} in) must match. When they do not, both respiration and cardiovascular functions will need to be altered to restore homeostasis.

Here we consider only the respiratory adjustments:

1. **Autoregulation**

 A. Lung perfusion
 - blood flow in lungs is constantly redirected to alveoli with high partial pressure of O\textsubscript{2}

 B. Alveolar ventilation
 - alveoli with high partial pressure of CO\textsubscript{2} receive increased air flow

2. **Neural regulation**

 A. Respiratory Rhythmicity Centers
 - located in the medulla oblongata
 - control the basic pace and depth of respiration
 1. DRG (Dorsal Respiratory Group)
 - controls diaphragm and external intercostal muscles on every breath
 - serves as the pacesetting respiratory center (active for 2 sec, inactive for 3 sec)
 2. VRG (Ventral Respiratory Group)
 - controls accessory muscles during forced breathing

 B. Respiratory Centers
 - located in the pons
 - influence and modify activity of the DRG and VRG to fine tune breathing rhythm and prevent lung over-inflation
 - monitor input from sensory receptors to trigger appropriate reflex to alter respiratory rate and depth of respiration to satisfy gas exchange needs
 1. Apneustic center
 - stimulates the DRG for inhalation: helps increase intensity of inhalation
 - responds to lung inflation signals from sensory receptors
 2. Pneumotaxic center
 - inhibits the apneustic center to allow exhalation
 - modifies the pace set by DRG and VRG
 - increased signaling will increase respiratory rate by decreasing duration of inhalation
 - decreased signaling will decrease respiratory rate but increase depth by allowing apneustic center to signal DRG for greater inhalation

 C. Respiratory Reflexes
 - respiratory centers modify activity based on input from receptors:
 1. Chemoreceptors: monitor CO\textsubscript{2}, O\textsubscript{2}, and pH in blood and CSF
 2. Baroreceptors: monitor blood pressure in aorta and carotid artery
 3. Stretch receptors: monitor inflation of the lungs (Hering-Breuer Reflex)
 4. Pulmonary irritant receptors: monitor particles in respiratory tracts and trigger cough or sneeze
 5. Other: pain, temperature, and other visceral sensations can trigger respiratory reflexes