The Eukaryotes: Fungi, Algae, & Protozoa (Chapter 12)

Lecture Materials

for

Amy Warenda Czura, Ph.D.

Suffolk County Community College

Eastern Campus

Primary Source for figures and content:

Tortora, G.J. <u>Microbiology An Introduction</u> 8th, 9th, 10th ed. San Francisco: Pearson Benjamin Cummings, 2004, 2007, 2010.

-50% of world population infected with eukaryotic pathogens

Two microbial kingdoms:

- 1. Fungi
- 2. Protista

Subkingdoms

- A. Protozoa (animal-like)
- B. Algae (plant-like)

Kingdom Fungi

mycology = study of fungi

common characteristics of fungi:

- 1. all are chemoheterotrophs
- 2. most are saprophytes
- 3. most are aerobic or facultatively anaerobic
- 4. few are human pathogens
- 5. cell walls are composed of chitin

Organized into three general groups based on shape:

- 1. Molds and Fleshy Fungi
- -consist of long filaments of cells joined end to end = hyphae
- -hyphae can be one of two structural types (genetically determined for a particular fungus):
 - 1. Septate Hyphae
 - -joined cells have distinct separations called septa
 - 2. Coenocytic Hyphae
 - -hyphae consists of fused cells

ppyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

-hyphae grow by extension at the tip

Aerial hyphae

Vegetative hyphae

a hypha from a spore

- -a mass of hyphae is called a mycelium
- -a mold mycelium will produce two different versions of its hyphae:
 - 1. vegetative hyphae
 - -grow flat along surfaces
 - -used to obtain nutrients
 - 2. aerial hyphae
 - -stick up off the mycelium
 - -used to produce spores for reproduction

2. Yeasts

- -nonfilamentous, unicellular, ovaloid
- -all are facultative anaerobes
- -in absence of oxygen will ferment carbohydrates into alcohol & carbon dioxide

A. Budding Yeasts

-divide by producing outgrowth called a bud

-bud will enlarge and separate from mother cell following mitosis

-if bud fails to separate = pseudohyphae

(not true hyphae like molds:
hyphae = cells tightly attached by shared
 walls, cytoplasm joined by pores
pseudohyphae = daughters remain stuck
 but no shared walls or cytoplasm)

B. Fission Yeasts

- -divide by mother cell elongating and undergoing mitosis
- -daughter cells separated by formation of a septum in the center (fission)

3. Dimorphic Fungi

-can grow in multicellular mold-like hyphal form or unicellular yeast-like ovaloid form depending on conditions

e.g. *Candida albicans* 25°C, acid pH = yeast 37°C, neutral pH = hyphae

Life cycle of fungi

- -fungi can reproduce asexually by:
 - 1. fragmentation of hyphae (mold), budding (budding yeast) or fission (fission yeast)
 - 2. asexual spores
- -fungi can reproduce sexually by the formation of spores
- spores are formed on the ends of aerial hyphae (**not** endospores: reproductive, outside cell) -asexual spores:
 - -form on the hyphae of one organism
 - -germinate to form exact clones of the parent
 - -sexual spores:
 - -form after the fusion of two haploid nuclei from opposite mating type cells of the same species
- -when spore geminates it has characteristics of both parents -sexual reproduction is NOT common in fungi

Asexual Spores

- -produced by mitosis and cell division
- -contain DNA that is exact copy of parent
- 1. Sporangiospore
- -spores form in sac called sporangium
- -sporangium forms at end of aerial hyphae called a sporangiophore
- -hundreds of sporangiospores in a single

- 2. Conidiospore
- -spores produced at the end of an aerial hyphae called a conidiophore
- -most common type:

Conidia: chains of conidiospores on conidiophore

Sexual Spores

- -formed by fusion of two haploid nuclei into single diploid zygote
- -zygote then undergoes meiosis to generate haploid spores (usually multiples of four)
- 1. Zygospores
- -one thick spore between two parent hyphae
- 2. Ascospores
- 3. Basidiospores
- -four spores on the end of a basidium—

Fungi organized into three Phyla based on the type of sexual spore:

- 1. Zygomycota (conjugation fungi: molds)
 - -coenocytic hyphae
 - -asexual spore = sporangiospores
 - $-sexual\ spore = zygospores$
 - e.g. Rhizopus (common bread mold)

- 2. Ascomycota (sac fungi: yeasts and molds)
 - -septate hyphae
 - -asexual spores = conidiospores
 - $-sexual\ spores = ascospores$
 - e.g. *Aspergillus* (black house mold) *Saccharomyces* (bread and beer yeast)

- 3. Basidiomycota (club fungi: mushrooms)
 - -septate hyphae
 - -asexual spores = conidiospores
 - -sexual spores = basidiospores

Anamorphs - fungi that have lost ability to reproduce sexually; DNA sequence analysis used to assign phylum e.g. *Penicillium* (green fruit mold)

Fungi differ from bacteria:

- -grow in acidic environments (pH 5)
- -resistant to osmotic pressure
- -grow in low moisture
- -require less nitrogen
- -can metabolize complex carbohydrates

Fungal Disease

- -few fungi are pathogens
- -if pathogenic, tend to be opportunistic pathogens (only cause disease in immunocompromised host)
- mycosis = fungal infection: can range superficial (skin) to systemic (blood,organs) Most are chronic due to slow growth and difficultly in treating

Lichens

- -combination of green algae and fungus
- -classified by fungus species
- -the two organisms exist in mutualistic

relationship: both benefit

- -algae: photosynthesis to synthesize organics to feed both
- -fungi: holdfast, & protection from desiccation

- -together can survive in environments where neither would survive alone
- -often first and only life forms to colonize newly exposed rock, slow growing
- -lichens (fungal part) degrade rock to produce soil for plants
- -lichen serves as food for animals

Fungi and Society

The good:

- -recycle vital nutrients: compost
- -aid plant growth
- -food and beverage production
- -vaccine production
- -drug production
- -biological control of pests
- -lichens:

air quality testing dyes and pH indicator litmus

The bad:

- -food spoilage
- -crop death
- -human pathogens nosocomial infections immunocompromised patients respiratory illness

Kingdom Protista

Subkingdom Algae

-plant-like protists

Common features of algae:

- 1. most have cellulose walls
- 2. carry out oxygenic photosynthesis using chlorophyll a in chloroplasts
- 3. require high moisture
- 4. are photoautotrophs
- 5. unicellular or multicellular (colonial or filamentous, no tissues)
- 6. reproduce sexually and asexually

Five Phyla/Divisions:

- 1. Brown algae
- -dark brown pigment & chlorophyll a + c
- -cellulose walls
- -non motile, multicellular
- -produce algin
- -food storage as mannitol
- e.g. seaweed

2. Red algae

- -red pigment & chlorophyll a + d
- -cellulose walls
- -non motile, multicellular
- -produce agar
- -food storage as starch
- e.g. seaweed

(c) Red alga (Microcladia)

10 cn

3. Green algae

- -cellulose walls, chlorophyll a + b
- -flagellated or filamentous
- -unicellular or multicellular
- -food storage as starch
- e.g. "pond scum"

4. Diatoms

- -light brown pigment & chlorophyll a + c
- -walls of pectin and silicon oxide (glass)
- -box + lid structure
- -unicellular
- -food storage as oil

- -cellulose walls of interlocked plates
- -unicellular, flagellated
- -food storage as starch
- e.g. plankton, "red tide"

Algae and Society

The good:

- -produce 80% of O_2 on earth today
- -foundation of many food chains (fix CO₂ into glucose)
- -petroleum deposits (oils from dead diatoms compressed in the earth)
- -diatomaceous earth (diatom silica shells): used for pool filters and metal polishing
- -algin and agar used as thickeners

The bad:

-human disease:

paralytic shellfish poisoning due to neurotoxins produced by dinoflagellates (red tide)

domoic acid intoxication due to diatoms in shellfish, diarrhea & memory loss

-plant disease:

Irish potato blight

Subkingdom Protozoa

-animal-like protists

Common features of protozoa:

- 1. all unicellular
- 2. all chemoheterotrophs
- 3. reproduce sexually or asexually
- 4. most are aerobic
- 5. require high moisture
- 6. have specialized structures to take in food
- 7. usually covered by a pellicle (no wall)
- 8. digestion occurs in vacuoles
- 9. excretion occurs through anal pore

Life cycle

- -switch between two forms:
- 1. trophozoite
 - -vegetative state, feeding and growing
- 2. cyst
 - -survival state
 - -form cyst when conditions bad or need to move from one host to next (cysts survive stomach acid)

-cysts convert back to trophozoite in favorable conditions (free living ones) or intestine (parasitic ones)

Five major Phyla based on gene sequencing and motility:

- 1. Archaezoa
 - -lack mitochondria
 - -spindle shaped
 - -flagella on front end (a) Chilomastix
 - -common symbionts in animal G.I.
 - Giardia (diarrhea) e.g. **Trichomonas** (STD vaginitis, urethritis)

2. Apicomplexa

- -non motile in mature form
- -complex organelles at apex house enzymes
- -obligate intracellular parasites
- -usually transmitted by insects
- -usually complex life cycle with different stages in different hosts
- e.g. Plasmodium (malaria)

3. Amoebozoa

-move via pseudopods e.g. Entamoeba

(amoebic dysentery)

4. Ciliophora -move via cilia

(only one pathogen in group: Balantidium coli -causes dysentery)

5. Euglenozoa

- -move via flagella (zooflagellates)
- -no sexual reproduction

Two groups:

A. Euglenoids

- -have pellicle
- -has flagella and eye spot (animal-like)
- -has chlorophyll a (plant-like)
- -photoautotroph or chemoheterotroph depending on light

(intermediate between algae and protozoa)

B. Hemoflagellates

- -transmitted by biting insects
- -live in host blood
- -long slender cells with undulating membrane and flagellum
- e.g. *Trypansoma* (African sleeping sickness, Chagas' disease)

Slime Molds

-fungus-like protists, most related to Amoebozoa

Common features of slime molds:

- 1. have both fungal and amoeba-like qualities
- 2. hunters of bacteria and fungi
- 3. will produce spores in unfavorable conditions (survival, not reproduction)

Two Phyla:

- 1. Cellular slime molds
- -in favorable conditions exist as unicellular "amoeba"
- -in unfavorable conditions:
 - -many cells congregate and fuse
 - -form multicellular "mushroom" to generate spores

(not reproductive: some cells die as stalk, others convert into spores)

-return to favorable: spores germinate into unicellular "amoeba"

2. Plasmodial Slime Molds

-favorable conditions: exist as plasmodium

= multi-nucleate mass of protoplasm

-moves as giant "amoeba"

-unfavorable conditions: mold like

-spreads out forming "mycelium"

-produces clumps of spores on

aerial hyphae

-favorable conditions: spores
germinate and undergo rapid
cell division to form new plasmodium

Protozoa and Society

The good:

-apicomplexa: insect pest control

-slime molds: decomposition

The bad:

-human disease:

diarrhea

STD

blood infections