Physical Methods Of Microbial Control:

1. Heat: denatures proteins (enzymes) = death

 A. Moist heat: disrupts H-bonds, coagulates molecules → denatures proteins

 1. Boiling: 100°C, 10 min
 - Kills: vegetative cells, most viruses
 - Applications: sanitization of water, dishes, cookware, etc.

 2. Steam:
 - Autoclave 15psi, 121°C, 15 min
 - Kills: vegetative cells, viruses, endospores (sterilization)
 - Applications: sterilization of any medical or research solutions and equipment that can tolerate heat and steam

 3. Pasteurization
 - Concept: kill pathogens and food spoilage organisms without destroying the food
 - Applications: sanitization of liquid foods
 - HTST (High Temperature Short Time): 72°C, 15 sec
 - Kills most vegetative cells

 4. UHT (Ultra High Temperature) Treatment: 140°C, 1 sec
 - Kills: vegetative cells, viruses, endospores (sterilization)

 B. Dry heat: oxidation of organic molecules → denatures proteins (cell destroyed)

 1. Incineration: reduce to ash
 - Complete destruction of everything
 - Applications: sterilization of inoculating instruments, waste disposal

 2. Sterilization oven: 170°C, 2+ hrs
 - Kills: vegetative cells, viruses, endospores (sterilization)
 - Applications: sterilization of instruments that can tolerate heat

2. Low Temperature: decrease chemical reaction rates → slow or stop cell division

 A. Refrigeration: 4°C
 - Static, except for psychrotrophs
 - Applications: short term food preservation

 B. Freeze: −20°C or lower (liquid nitrogen -196°C)
 - Rapid freezing: static to many microbes, some sanitization especially during thawing
 - Applications: long term food preservation (-20°C), specimen storage (-80 to -196°C)
3. Filtration: remove microbes
 Physically removed microbes from liquids or gasses
 Applications: purification of heat-labile liquids, gasses
 Filters:
 0.2µm pores: remove most vegetative cells and endospores
 0.01µm pores: remove virus and large proteins
 HEPA (High Efficiency Particulate Air) filters: remove 99.97% of particles \(\geq 0.3\mu m\)

4. Desiccation: remove water → inhibit chemical reactions → stop microbial growth
 Lyophilization/Freeze-drying: quick freeze -95°C with vacuum sublimation
 Static for most microbes
 Applications: food preservation, specimen preservation

5. Osmotic Pressure: hypertonic environment (remove water) → inhibit chemical reactions → stop growth
 High salt or high sugar concentrations
 Static for bacteria, fungi often resistant
 Applications: food preservation

6. Radiation: high energy waves
 A. Ionizing radiation (1nm or less): ionizes organic molecules → free radicals → molecular damage
 Kills: vegetative cells, viruses, most endospores with adequate exposure
 Applications: food preservation, sterilization of pharmaceuticals, medical supplies, mail
 Ionizing rays:
 1. Gamma rays (radioactive elements)
 Deep penetration, many hours exposure to sterilize
 2. X-rays (machine generated)
 Deep penetration, many hours exposure to sterilize
 3. High energy electron beams (electron accelerator generated)
 Low penetration, few second exposure to sterilize
 B. UV radiation (260nm): creates thymine dimers → damage DNA
 Kills: vegetative cells, DNA based viruses, most endospores
 Requires direct exposure
 Applications: sterilize/sanitize room, counter, and hood surfaces, medical products, water, air
Chemical Methods of Microbial Control

Disinfectants/Antiseptics

1. Phenolics
 Action: denature proteins & disrupt cell membranes
 Intermediate activity
 Broad spectrum, most effective on Gram-positive bacteria
 Positive aspects: -active in presence of organics
 -stable
 -persist long after application
 Negative aspects: -corrosive to skin and instruments
 -pungent odor
 -not effective for endospores
 Applications: surface disinfection,
 bisphenols (e.g. triclosan): in lotions, soaps, toothpaste, kitchenware

2. Biguanides (Chlorhexidine)
 Action: disrupt cell membranes
 Low activity
 bactericidal on Gram-negatives and Gram-positives, fungicidal on yeast
 Positive aspects: -strong affinity for skin
 -low toxicity
 Negative aspects: -damages eyes
 -not effective on Mycobacterium, endospores, protozoan cysts, & most viruses
 Applications: Skin and mucous membrane disinfection

3. Halogens
 A. Iodine
 Action: impairs protein synthesis & disrupts cell membranes
 Intermediate activity
 Broad spectrum: bacteria, fungi, some endospores, some viruses
 Positive aspects: -effective against all vegetative cells including Mycobacterium
 Negative aspects: -staining
 -sometimes irritating to skin
 -may trigger allergies
 Applications: skin disinfection, wound treatment, water treatment

 B. Chlorine
 Action: forms hypochlorous acid with water → oxidizing agent, denatures proteins
 Intermediate activity
 Broad spectrum: bacteria, fungi, some endospores, some viruses
 Positive aspects: -effective against all vegetative cells including Mycobacterium
 -cost effective
 Negative aspects: -action inhibited by organics
 -can form carcinogenic compounds
 Applications: water and sewage treatment, surface and instrument disinfection
4. Alcohols
 Action: denature proteins & dissolve membrane lipids
 Intermediate activity as 70% solution with water
 bactericidal, fungicidal, virucidal on enveloped viruses
 Positive aspects: -degermation of greasy skin
 -effective against vegetative cells
 Negative aspects: -not effective for wounds
 -volatile and flammable
 -dries and irritates skin
 -not effective on endospores, cysts, and non-enveloped viruses
 Applications: skin and instrument disinfection

5. Heavy Metals (Silver, Copper, Zinc)
 Action: bind sulfur groups causing inactivation or precipitation of proteins
 Low activity
 Most are bacteristatic & fungistatic, silver is biocidal
 Positive aspects: -oligodynamic action
 Negative aspects -effective on vegetative cells only
 -inhibited by organics
 Applications: wound dressings, newborn eyes, paints, water treatment

6. (Surfactant) Acid-Anionic Sanitizers
 Action: disrupt plasma membrane & denature proteins
 Intermediate activity
 Broad spectrum
 Positive aspects: -nontoxic
 -non corrosive
 -fast acting
 -stable
 Negative aspects: -expensive
 -only effective at low pH
 Applications: disinfection of food production surfaces

7. (Surfactant) Quarternary Ammonium Compounds (QUATs)
 Action: denature proteins & disrupt cell membranes
 Low activity
 bactericidal on Gram-positive, fungicidal, amoebicidal, virucidal on enveloped virus
 Positive aspects: -colorless, odorless, tasteless
 -stable
 -effective when diluted
 -nontoxic
 Negative aspects: -poorly effective against Gram-negative bacteria
 -not effective against endospores, Mycobacteria, and non-enveloped virus
 \textit{Pseudomonas} will grow in it
 -inhibited by organics, soaps, hard water, and anionic sanitizers
 Applications: skin antiseptic, mouthwash, throat sprays
8. Aldehydes (Formaldehyde, Glutaraldehyde)
 Action: cross-link (thus inactivate) nucleic acids and proteins
 High activity (sterilization)
 biocidal including endospores
 Positive aspects: achieves sterilization
 Negative aspects: unstable
 -toxic
 -volatile with noxious fumes
 Applications: specimen preservation (embalming), vaccine sterilization

9. Gaseous Chemosterilants
 Ethylene Oxide gas
 Action: binds to proteins causing inactivation
 High activity (sterilization)
 biocidal including endospores
 Positive aspects: safe for electronics
 -highly penetrating
 Negative aspects: extremely toxic
 -carcinogenic
 -explosive
 -requires long exposure (4-18 hrs)
 -requires sealed chamber that can be safely vented
 Applications: sterilization of equipment, medical supplies, bedding

10. Peroxogens
 Action: oxidize cellular components: denature proteins

 A. Hydrogen peroxide
 Intermediate activity
 Broad spectrum
 Positive aspects: cost effective
 -sterilizing in vaporized high concentration form
 Negative aspects: inhibits healing
 -toxic
 Applications: surface, instrument, food package, & contact lens disinfection, anaerobic wound treatment

 B. Peracetic acid
 High activity (sterilization)
 biocidal including endospores
 Positive aspects: no toxic residues
 -effective in presence of organics
 Negative aspects: corrosive on some surface
 -pungent odor
 Applications: disinfection of food-processing and medical equipment