Chapter 1

- **Science Definitions**
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded.

Theory: A hypothesis becomes a theory when it can explain and predict observations and it also has been thoroughly tested by the scientific community. Even theories, over time, can be disproved and discarded.

Law: If a theory stands the test of time (years and decades) it may be called a *law* or *unifying theory* and is the closest approximation to "the truth" possible. Keep in mind that it is impossible to prove that a theory is true, only that it is untrue.

Forcing: Factors that cause change.

Feedback: A process that alters climate changes already underway. *Positive* means increasing change while *negative* means decreasing change.

Weather: Short term, random event within the atmosphere.

Climate: Long term trend or statistical probability of changes in the atmosphere.

Anthropogenic: Originating in human activity.
Since the last major glacial period about 12,000 years ago, climate has been fairly stable.

Humanity has adapted to this climate and our existence is based on this stable climate.

Since the Industrial Revolution, global T has increased by 1°C (1.8°F).
Chapter 1

- Science Definitions
- **Climate Stability**
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

- IPCC models predict more heat waves and fewer cold snaps with higher emissions of heat trapping gases
- Precisely what is happening in the US (and also globally)
Chapter 1

• Science Definitions
• **Climate Stability**
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

25 Years of the IPCC
Chapter 1

• Science Definitions
• **Climate Stability**
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Video: **Climate Change & Extremes**

![Graph showing probability of occurrence of cold and hot weather](image)

Kitchen (2013)
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Web Alert:

Determining Past Climate

Mann, et al. (2008)
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Ice cores

The ice from the bottom of that core is over 20,000 years old.

Video: Ice Core Data
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Mann, et al. (2008)

Marcott, et al. (2013)
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Video: The Hockey Stick & Climate Wars
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Earth at the last glacial maximum
Kitchen (2013)

65 million years of climate change
Kitchen (2013)
Chapter 1

- Sun’s radiant energy has been fairly constant in the previous millions of years

- **Radiative forcing** is the difference between incoming vs. outgoing radiation

- Humans are causing an increased radiative forcing mostly due to increased greenhouse gases (GHG)

Radiative Forcing

<table>
<thead>
<tr>
<th>Emitted compound</th>
<th>Resulting atmospheric drivers</th>
<th>Radiative forcing by emissions and drivers</th>
<th>Level of confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>CO₂</td>
<td>1.68 [1.33 to 2.03]</td>
<td>VH</td>
</tr>
<tr>
<td>CH₄</td>
<td>CO₂, H₂O, O₃, CH₄</td>
<td>0.97 [0.74 to 1.20]</td>
<td>H</td>
</tr>
<tr>
<td>Halo-carbons</td>
<td>O₃, CFCs, HCFCs</td>
<td>0.16 [0.01 to 0.35]</td>
<td>H</td>
</tr>
<tr>
<td>N₂O</td>
<td>N₂O</td>
<td>0.17 [0.13 to 0.21]</td>
<td>VH</td>
</tr>
<tr>
<td>CO</td>
<td>CO₂, CH₄, O₃</td>
<td>0.23 [0.16 to 0.30]</td>
<td>M</td>
</tr>
<tr>
<td>NMVOC</td>
<td>CO₂, CH₄, O₃</td>
<td>0.10 [0.05 to 0.15]</td>
<td>M</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrate, CH₄, O₃</td>
<td>-0.15 [-0.34 to 0.03]</td>
<td>M</td>
</tr>
<tr>
<td>Aerosols and precursors (Mineral dust, SO₂, NH₃)</td>
<td>Mineral dust, Sulphate, Nitrate, Organic carbon, Black carbon</td>
<td>-0.27 [-0.77 to 0.23]</td>
<td>H</td>
</tr>
<tr>
<td>Short-lived gases and aerosols (Cloud adjustments due to aerosols)</td>
<td>Cloud adjustments due to aerosols</td>
<td>-0.55 [-1.33 to -0.06]</td>
<td>L</td>
</tr>
<tr>
<td>Albedo change due to land use</td>
<td>Albedo change due to land use</td>
<td>-0.15 [-0.25 to -0.05]</td>
<td>M</td>
</tr>
<tr>
<td>Natural</td>
<td>Changes in solar irradiance</td>
<td>0.05 [0.00 to 0.10]</td>
<td>M</td>
</tr>
</tbody>
</table>

Total Anthropogenic RF relative to 1750

- 2011: 2.29 [1.13 to 3.33] (H)
- 1980: 1.25 [0.64 to 1.86] (H)
- 1950: 0.57 [0.29 to 0.85] (M)
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

- Sun’s radiant energy has been fairly constant in the previous millions of years

- Radiative forcing is the difference between incoming vs. outgoing radiation

- Humans are causing an increased radiative forcing mostly due to increased greenhouse gases (GHG)

Figure 10.5 | Assessed likely ranges (whiskers) and their mid-points (bars) for attributable warming trends over the 1951–2010 period due to well-mixed greenhouse gases, other anthropogenic forcings (OA), natural forcings (NAT), combined anthropogenic forcings (ANT) and internal variability. The Hadley Centre/Climatic Research Unit gridded surface temperature data set 4 (HadCRUT4) observations are shown in black with the 5 to 95% uncertainty range due to observational uncertainty. In this record (Morice et al., 2012).
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

• Sun’s radiant energy has been fairly constant in the previous millions of years

• **Radiative forcing** is the difference between incoming vs. outgoing radiation

• Humans are causing an increased radiative forcing mostly due to increased greenhouse gases (GHG)

Attribution of Surface Temperature trends since 1950

> 50% warming due to human activity

PDF derived from IPCC Fig. 10.5

Best guess ~110%
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• **Greenhouse Gases**
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Text Book Animation: Global Warming, Climate Change (CH.3)

Web Alert:

Impact of Greenhouse Gases
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- **Greenhouse Gases**
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

- Greenhouse gases allow sunlight (visible-shortwave) to freely pass through to the surface

- Greenhouse gases slow the heat (infrared-longwave) leaving the Earth

- End result: a warmer climate

Web Alert:

Impact of Greenhouse Gases

NASA (2010)
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
 • Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

• Climate change from these cycles take millions of years
• Mountain building enhances precipitation
• Precipitation removes CO₂ which then enters oceans
• Shelled creatures absorb that CO₂ into shells
• Dead shells put CO₂ into sea floor
• Sea floor subducts, heats up, and melts
• CO₂ added back to atmosphere via erupting volcanoes

Web Alert: Ruddiman (2008)

Climate Change: Natural Causes
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Video: Plate Tectonics
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- **Global Tectonics**
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Kitchen (2013)
Earth 255 million years ago
Web Alert:

Climate Change: Natural Causes

- Climate change from these Milankovitch cycles range between 41,000 to 100,000 years
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

• Ocean conveyor moves heat around and causes climate changes on time scales of decades to centuries

• Volcanoes and El Niños change climate on 1-5 year intervals
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Volcanoes and El Niños change climate on 1-5 year intervals

Kitchen (2013)
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Kitchen (2013)
Why Climate Models Should Have Accurate Future Projections

- Climate models are based upon well-established laws of physics and use a wealth of actual observations
- These models are able to simulate the current climate
- These models are able to simulate past climate

Web Alert:

Climate Models & Accuracy
Various emission scenarios result in different levels of global warming

A1F1 is the **warmest world** and that is the path we are on now
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

IPCC (2013) now uses **Representative Concentration Pathways (RCPs)** instead of previous A & B carbon emission scenarios. There are four pathways: RCP8.5, RCP6, RCP4.5 and RCP2.6 - the last is also referred to as RCP3-PD.

We are currently tracking along RCP8.5
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- **Climate Models**
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

- Society quickly becomes vulnerable at global T increases above 2°C
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Web Alert: Modern Day Climate Change

How do we know the world is warming?

Air Temperature over Ocean
Humidity
Temperature of the Lower Atmosphere
Arctic Sea Ice
Snow
Glaciers
Ocean Heat Content
Sea Surface Temperature
Global Sea Level
Air Temperature over Land
What can we do?

USGCRP Climate Literacy Guide, 2009

NCDC (2010)
Chapter 1

- Science Definitions
- Climate Stability
- Lessons from the Past
- Radiative Forcing
- Greenhouse Gases
- Global Tectonics
- The Sun’s Role
- The Ocean’s Role
- Climate Models
- Global T Plots
- Global Cooling?
- How Good are Models?
- Summary

Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

Web Alert:

Global Cooling?
Chapter 1

• Science Definitions
• Climate Stability
• Lessons from the Past
• Radiative Forcing
• Greenhouse Gases
• Global Tectonics
• The Sun’s Role
• The Ocean’s Role
• Climate Models
• Global T Plots
• Global Cooling?
• How Good are Models?
• Summary

IPCC (2013)
Climate change is caused by natural and human forcing

Before 1975, natural and human forcing appear to have shared responsibility for the post-IR global warming

Since 1975, most of the global warming is due to human activities, primarily emissions of GHGs