NURSING CARE OF CLIENTS EXPERIENCING STRESSORS OF ENDOCRINE FUNCTION

NR 40
FLORENCE MULLARKEY

ENDOCRINE FUNCTION: ANATOMY AND PHYSIOLOGY

- IDENTIFY AND LOCATE THE MAJOR ENDOCRINE ORGANS
 - HYPOTHALAMUS
 - PITUITARY:
 - ANTERIOR/ POSTERIOR
 - THYROID
 - PARATHYROID
 - ADRENAL

KEY QUESTIONS

- WHAT DO THESE ORGANS HAVE IN COMMON?

HORMONES

- CHEMICAL MESSENGERS

- RELEASE IS STIMULATED BY
 - OTHER HORMONES
 - IONS/NUTRIENTS
 - NERVE FIBERS

HORMONES

- ACT ON TARGET CELLS
 The receptor site on the target cell responds only to specific hormones....

- TRIGGER A CELLULAR RESPONSE

FEEDBACK SYSTEM

- HORMONE CONCENTRATION IS REGULATED BY NEGATIVE FEEDBACK
- A HORMONAL SETPOINT IS PREDETERMINED.
- RISE ABOVE SETPOINT DECREASES PRODUCTION
- DROP BELOW SETPOINT INCREASES PRODUCTION

HYPOTHALAMUS
RELEASING HORMONES THAT TARGET THE ANTERIOR PITUITARY

8 □ HYPOTHALAMUS

INHIBITING HORMONES PRODUCED BY THE HYPOTHALAMUS

9 □ The master gland
 …The pituitary gland

10 □ ANTERIOR PITUITARY HORMONES
 • TSH (THYROID STIMULATING HORMONE)
 • ACTH (ADRENOCORTICOTROPIC HORMONE)
 • FSH (FOLLICLE STIMULATING HORMONE)
 • PRL (PROLACTIN)
 • GH (GROWTH HORMONE)
 • MSH (MELANOCYTE-STIMULATING HORMONE)

11 □ POSTERIOR PITUITARY HORMONES
 These hormones are synthesized in the hypothalamus and are stored in the posterior pituitary gland.
 • VASOPRESSIN (ANTIDIURETIC HORMONE/ADH)
 • OXYTOCIN

12 □ NURSING CARE OF CLIENTS WITH THYROID/PARATHYROID DYSFUNCTION

13 □ THE THYROID GLAND DOES THE WORK OF RELEASING THYROID HORMONES
 – It is directly influenced by TSH produced by the anterior pituitary gland.
 – It is indirectly influenced by TRH released by the hypothalamus.

14 □ THYROID
 • THYROXINE (T4)
 – SECRETED IN RESPONSE TO TSH
 • TRIIODO-THYRONINE (T3)
 – CONVERTED FROM THYROXINE AT TARGET TISSUE

15 □ HYPOTHALAMUS/PITUITARY AXIS
 • THESE STRUCTURES RELEASE HORMONES THAT INHIBIT/STIMULATE THYROID FUNCTION
– **HYPOTHALAMUS:**
 • **TRH, SOMATOSTATIN**
– **ANTERIOR PITUITARY:**
 • **TSH**

16 **THYROID**

1 ● **CALCITONIN**

 ● (the serum calcium decreases)
 ● **DECREASES BONE RESORPTION**
 – increases calcium uptake in bone
 ● **DECREASES KIDNEY RESORPTION**
 – kidneys eliminate calcium

17 **THYROID STRESSORS OF HYPER-FUNCTION**

18 **TYPES OF HYPERTHYROIDISM AND ETIOLOGY**

 ● **GRAVES DISEASE AND IMMUNE MEDIATED THYROIDITIS**
 – AUTOIMMUNE
 ● **TOXIC MULTINODULAR GOITER**
 – THYROID NODULES INCREASE RELEASE
 ● **PITUITARY HYPERTHYROIDISM**
 – PITUITARY ADENOMA RESULTING IN EXCESSIVE TSH STIMULATION
 ● **T3 THYROTOXICOSIS**
 – INCREASE IN SECRETION OF T3, CAUSE UNKNOWN

19 **Figure 64-3**

 Goiter

20 **Figure 64-1**

 Ophthalmopathy—proptosis

21 **TYPES OF HYPERTHYROIDISM AND ETIOLOGY**

 ● **EXOGENOUS HYPERTHYROIDISM**
 – TOOK TOO MUCH THYROID MEDICATION
 ● **NEOPLASM**
 – THYROID OR OTHER BODY SITE

 THYROID STORM IS A TRUE MEDICAL EMERGENCY

22 **PATHOPHYSIOLOGY**

 ● **DEPENDING ON ETIOLOGY**
 ● **RESULT IS TOO MUCH CIRCULATING HORMONE THAT LEADS TO;**
– EXCESSIVE PROTEIN BREAKDOWN
– LOSS OF FAT STORES
– IMPAIRED GLUCOSE METABOLISM

23 GRAVES DISEASE
● INCIDENCE AND ETIOLOGY
 – MOST COMMON CAUSE OF HYPERTHYROIDISM
 – ASSOCIATED WITH AUTOIMMUNE ABNORMALITY
 – FAMILIAL
 – WOMEN>MEN
 – INCREASED INCIDENCE OF PRESENTATION IN AGE UNDER 40

24 GRAVES DISEASE
● CLINICAL MANIFESTATIONS
 – HEAT INTOLERANCE
 – INSOMNIA
 • FATIGUE MAY BE PRESENT
 – VISUAL CHANGES(EXOPHTHALMOS)
 – WEIGHT LOSS
 • INCREASED APPETITE
 • INCREASED FREQUENCY OF BOWEL MOVEMENTS
 – CHANGES IN MENSTRUAL CYCLE
 – PALPITATIONS, CP IN OLDER CLIENTS

25 Figure 64-2
Exophthalmos

26 GRAVES DISEASE
● OBJECTIVE ASSESSMENT
 – VITAL SIGNS
 – NEURO
 – HEENT
 – NECK
 – RESPIRATORY
 – CV
 – GI
 – MS
 – REPRODUCTIVE
 – INTEGUMENT

27 TOXIC MULTINODULAR GOITER
● INCIDENCE AND ETIOLOGY
 • WOMEN AGE 60-70
 • INDEPENDENTLY FUNCTIONING THYROID NODULES THAT MAY BE EITHER BENIGN OR MALIGNANT
● CLINICAL MANIFESTATIONS
 • SLOWER TO DEVELOP
 • REPORTS GOITER PRESENT NUMBER OF YEARS
● OBJECTIVE ASSESSMENT
 • SMALL PALPABLE DISCRETE NODULES
28 THYROID CRISIS
 ● INCIDENCE AND ETIOLOGY
 • UNTREATED/OR YET TO BE DIAGNOSED GRAVES DISEASE/HYPERTHYROIDISM
 • PRIMARY STRESSOR
 • INFECTION, TRAUMA
 • INADVERTANT SURGICAL MANIPULATION OF THE THYROID GLAND
 ● CLINICAL MANIFESTATIONS
 • PROFOUND SYMPTOMS OF HYPERTHYROIDISM
 ● TRUE MEDICAL EMERGENCY

29 THYROID CRISIS
 ● OBJECTIVE ASSESSMENT
 – ALTERED MENTAL STATUS
 • AGITATION PROGRESSING TO SWIZURES
 – HYPERTHERMIA (102-106) F
 – ELEVATED SBP
 – TACHYCARDIA
 – RESPIRATORY DISTRESS
 – ABDOMINAL PAIN, NV/DIARRHEA
 ● TRUE MEDICAL EMERGENCY

30 ASSESSMENT OF THYROID FUNCTION
 DIAGNOSTIC TESTS: HYPERFUNCTION

31 ASSESSMENT OF THYROID FUNCTION
 ● RAI UPTAKE TEST
 – RADIOACTIVE IODINE TEST
 • THYROID SCAN
 • ORAL/IV RAD IODINE
 • SCAN 24 HOURS AFTER ADMINISTRATION
 • INCREASED UPTAKE SEEN IN GRAVES
 ● THYROID SUPPRESSION TEST
 – BASELINE THYROID TESTS PERFORMED
 – PT TAKES TH FOR 7-10 DAYS
 – REPEAT ASSAYS SHOULD SHOW SUPPRESSION

32 MANAGEMENT OF HYPERTHYROIDISM
 Discuss NIC and NOC for each:
 ● Risk for decreased cardiac output
 ● Risk for hyperthermia
 ● PC: altered nutrition < body requirements
 ● Activity intolerance
 ● Sensory perceptual alteration-vision
 ● Body image disturbance

33 OVERVIEW OF MEDICAL MANAGEMENT
 ● REDUCE TH SYNTHESIS
 – PTU/TAPAZOLE
● ELIMINATE SYMPTOMS
 – BETA BLOCKADE TX
● REDUCE THYROID SIZE/ VASCULARITY
 – RADIOACTIVE IODINE
 – SATURATED IODINE
 • reduces TH synthesis also
 – SURGICAL RESECTION

34 MANAGEMENT OF HYPERTHYROIDISM

1 TAPAZOLE
 PTU
 – INHIBIT TH PRODUCTION

BETA BLOCKERS
 – PRO-PRANOLOL TO TREAT SYMPTOMS

2 NSG CONSIDERATIONS:
 – WATCH FOR S/S OF HYPOTHYROIDISM
 – ADMIN SAME TIME EACH DAY
 – BLEEDING PRECAUTIONS
 – MAY REQUIRE LIFELONG ADMINISTRATION

NSG CONSIDERATIONS:
 – DOES NOT CORRECT DISEASE
 – HOLD FOR DECREASE HR/SBP

35 MANAGEMENT OF HYPERTHYROIDISM

1 RADIOACTIVE IODINE THERAPY
 – DESTROYS THYROID TISSUE
 – EUTHYROID IN 3-6 MO

2 NSG CONSIDERATIONS
 – ALLERGIES TO IODINE
 – ASSESS FOR POSS OF PREGNANCY
 – MAY DEVELOP HYPOTHYROIDISM

36 MANAGEMENT OF HYPERTHYROIDISM

1 IODINE SOURCES
 – INHIBIT TH SYNTHESIS
 – REDUCE VASCULARITY PRIOR TO SURGERY

2 NSG CONSIDERATIONS:
 • ALLERGIES TO IODINE
 • BLEEDING PRECAUTIONS
37 MANAGEMENT OF HYPERTHYROIDISM

- **SURGICAL OPTIONS**
 - **SUBTOTAL THYROIDECTOMY**
 - Used when the TH overproduction is a result of excess thyroid tissue
 - Vascularity is reduced prior to surgery through saturated iodine sources

38 NURSING CARE-SURGERY

- Subtotal thyroidectomy—leave functioning remnant to produce TH and prevent hypothyroidism
- If malignancy, total thyroidectomy—life-long replacement necessary
- Have client in balanced metabolic/euthyroid state
- Antithyroids, beta blockers, anti anxiety meds
- Iodine preparations—decrease vascularity

39 NURSING CARE-SURGERY

- Prevent strain on suture line, by elevating HOB, avoid abrupt turning and changing positions, support the head with hands
- Prevent, detect, relieve complications
 - Hemorrhage—bulging dressing, dampness at back of neck or on pillow, resp difficulty
 - Respiratory distress—r/t hemorrhage, edema, tetany and laryngeal spasm r/t parathyroid gland removal, tetany seen 1-7 days after surgery Tracheostomy tray at bedside
 - Laryngeal nerve damage—test voice, hoarseness may be present temporarily

40 NURSING CARE-SURGERY

- Temporary hypoparathyroidism can occur. Drop in serum calcium 24-48 hours post-op
 - Positive Chvostek’s sign think chopsticks
 - Positive Trousseau’s sign think tourniquet

 Have calcium gluconate or calcium chloride on hand after surgery

41 CARE OF POST-OP SBTL THYROIDECTOMY

42 THYROID CRISIS(STORM)

- Sometimes fatal, acute episode of thyroid overactivity, may be precipitated by acute stressors eg., infections, trauma, CV disease, characterized by:
 - High fever—often cardinal symptom (102-106)
 - Severe HTN, tachycardia, CHF
 - Delerium
 - Dehydration
 - Extreme irritability
 - Adrenocortical malfunction
 - Extreme hypermetabolism
43 MANAGEMENT OF THYROID CRISIS
- Hypothermia, ice packs, no ASA—activates thyroid hormone
- Beta blocking agents
- Digoxin and diuretics
- Quiet, calm environment
- IV fluids
- Large doses of antithyroid meds
- Adrenal corticosteroids

44 THYROID DISORDERS OF HYPO-FUNCTION

45 THYROID DISORDERS

HYPO-FUNCTION

PRIMARY
- CONGENITAL DEFECT OR SURGICAL REMOVAL
- AUTOIMMUNE THYROIDITIS
- IODINE DEFICIENCY

SECONDARY
- INSUFFICIENT STIMULATION
- PERIPHERAL RESISTANCE TO TH
- PITUITARY ADENOMA

46 HYPOTHYROIDISM

- INCIDENCE AND ETIOLOGY
 - WOMEN>MEN
 - INCREASED INCIDENCE OF PRESENTATION IN AGE BETWEEN 30-60 YEARS
 - LACK OF USE OF IODIZED SALT
 - USE OF ANTITHYROID DRUGS/SURGICAL REMOVAL
 - FAMILIAL LINK IN HASHIMOTO’S THYROIDITIS
 - AUTOIMMUNE CAUSE IN HASHIMOTO’S

47 HYPOTHYROIDISM

- CLINICAL MANIFESTATIONS
 - CONFUSION/SYNCOPE
 - LETHARGY, MEMORY IMPAIRMENT
 - COLD INTOLERANCE
 - MUSCLES ACHES/STIFFNESS
 - FATIGUE
 - WEIGHT GAIN
 - DECREASED APPETITE
 - CONSTIPATION
 - FLUID RETENTION
 - ANOVULATION/IMPOTENCE

48 HYPOTHYROIDISM

- OBJECTIVE ASSESSMENT
 - VITAL SIGNS
 - NEURO
 - HEENT
– NECK
– RESPIRATORY
– CV
– GI
– MS
– REPRODUCTIVE
– INTEGUMENT

Figure 64-4
Myxedema

ASSESSMENT OF THYROID FUNCTION
DIAGNOSTIC TEST: HYPOFUNCTION

MANAGEMENT OF HYPOTHYROIDISM
Discuss NIC and NOC
● PC: DECREASED CARDIAC OUTPUT
● Risk for ineffective respiratory function
● Risk for hypothermia
● Constipation
● Altered thought processes
● PC: fluid and electrolyte imbalance
● Body image disturbance

OVERVIEW OF MEDICAL MANAGEMENT
● THYROID REPLACEMENT THERAPY
 – INCREASE LEVELS OF TH
 – INCREASE METABOLIC RATE
● RESECTION OF GOITER
 – IN CASES OF RESPIRATORY DIFFICULTY OR DYSPHAGIA

MANAGEMENT OF HYPOTHYROIDISM

1 T4 REPLACEMENT
 – LEVOTHYROXINE
 • SYNTHROID

T3 REPLACEMENT
 – CYTOMEL
 – THYROLAR
 – EUTHROID

2 NSG CONSIDERATIONS:
– WATCH FOR S/S OF HYPERTHYROIDISM
– ADMIN 1 HR BEFORE OR 2 HRS AFTER MEALS
– BLEEDING PRECAUTIONS
– MONITOR FOR DIG TOXICITY
– REQUIRE LIFELONG ADMINISTRATION
– AVOID TOO MUCH TURNIPS, CABBAGE, CARROTS SPINACH, PEACHES

54

MYXEDEMA COMA
● Result of long standing unrecognized or inadequately treated hypothyroidism
● Result of trauma, infection, CNS depressants, radioactive iodine use to treat hyperthyroidism
● Sometimes precipitated by thyroidectomy

55

Manifestations
● Severe hypometabolic state
● All s/s of hypothyroidism extremely exaggerated
 – Profound hypothermia
 – Hypoventilation
 – Hypotension, bradycardia
 – CNS depression, lethargy, coma
 – Resp acidosis, hyponatremia, hypoglycemia, elevated SGOT, CPK, LDH
 – Deep, coarse voice, paranoia, etc, etc, etc.

56

Treatment
● Maintain airway, ventilation
● Fluid and electrolyte replacement
● Thyroid hormone replacement, IV slowly, also glucose and corticosteroids
● Acid-base balance
● Pressor agents
● Rewarm slowly

57

NURSING CARE OF PATIENTS WITH DISORDERS OF THE PARATHYROID GLANDS

58

PARATHYROID

1. PTH
 – AT KIDNEYS
 • DECREASES CALCIUM EXCRETION
 • INCREASES PHOSPHATE EXCRETION

2. PTH
 – AT BONES
 • INCREASES BONE RESORPTION
 • RESULTS IN LOSS OF BONE MASS
 • INCREASES CALCIUM RELEASED FROM BONES

59

HYPERPARATHYROIDISM

1. PRIMARY
 • PTH PRODUCTION UNRESPONSIVE TO FEEDBACK MECHANISMS
 • SECONDARY
• UNABLE TO ACHIEVE NORMAL CA LEVELS DUE TO FAILURE OF KIDNEYS

★ TERTIARY
• HYPERPLASIA AND LOSS OF SENSITIVITY TO CALCIUM LEVELS

2

– ADENOMA

– CHRONIC HYPOCALCEMIA

– CHRONIC RENAL FAILURE

60 □ HYPERPARATHYROIDISM

★★ INCIDENCE AND ETIOLOGY
– WOMEN>MEN
– OLDER ADULTS
– 80% RESULT OF CHIEF CELL ADENOMA
– RARE DISORDER THAT IS USUALLY DISCOVERED WITH THE DISCOVERY OF RELATED DISEASE
• RENAL/URINARY
• OSTEOPOROSIS

61 □ Hyperparathyroidism

★★ CLINICAL MANIFESTATIONS
• Stones – renal calculi, polyuria, polydipsia, uremia
• Bones – osteitis, osteoporosis, bone cysts, osteomalacia, rickets
• Abdominal groans – constipation, indigestion, PUD
• Psychic moans – lethargy, fatigue, depression, psychoses
• Other – proximal muscle weakness, HTN, arrhythmias keratitis, conjunctivitis

62 □ HYPERPARATHYROIDISM

★★ DIAGNOSIS
– 6 MONTH HISTORY OF SYMPTOMS
– EXCLUSION OF OTHER CAUSES
– RADIOGRAPHIC STUDIES
– BONE SCAN
– LAB TESTS
 – CA > 10.5
 – PHOS: LOW LEVELS
 – CHLORIDE LEVELS ELEVATED
 – PARATHORMONE LEVELS ELEVATED

63 □ MANAGEMENT OF HYPERPARATHYROIDISM

1

– PC- decreased cardiac output

– RISK FOR ALTERED URINARY ELIMINATION

– Risk for injury

– PAIN
- Assess for signs of fluid overload
- Monitor I/O, daily weight
- Administer infusion therapy
- Administer furosemide
- Monitor electrolytes
- Strain urine for calculi

- Prevent pathologic fractures
- Administer analgesics

64 HYPERPARATHYROIDISM

- Treatment
 - Decrease calcium levels
 - Large amounts of saline infusion
 - Diuretic therapy
 - Avoid thiazide diuretics
 - Promote calcium retention
 - Calcitonin SQ or nasal spray
 - Decrease bone resorption (keeps calcium in bones)
 - Phosphate administration
 - Low calcium and Vit D diet

65 HYPERPARATHYROIDISM

- Surgery
 - Removal of parathyroid glands affected by hyperplasia or adenoma—one half of one gland remaining is sufficient to supply PTH, minimally invasive technic
 - Care same as for thyroidectomy
 - Autotransplantation of healthy parathyroid gland tissue into brachioradialis muscle of forearm—takes time to come to full effect, in meantime, client must supplement diet with calcium and vitamin D

66 HYPOPARATHYROIDISM

- Disorder of decreased circulating parathyroid hormone
- Results from decreased amounts or decreased sensitivity resulting in hypocalcemia and hyperphosphatemia

67 HYPOPARATHYROIDISM

- Incidence and etiology
 - S/P subtotal thyroidectomy
 - Damage/accidental removal
 - Can result from hypomagnesia
 - Etiology unknown
 - PTH corrected with magnesium correction
 - Suspect in alcoholism
 - Malnutrition/malabsorption

68 HYPOPARATHYROIDISM

- Clinical manifestations
– NEUROLOGIC
 • MENTAL STATUS/AFFECT
 – CONFUSION, ENCEPHALOPATHY, DEPRESSION, PSYCHOSIS
 • TETANY, CONVULSIONS
 • SPASM
 – LARYNGOSPASM
 – CARPOPEDAL SPASM
 – MUSCLE ACHE

69 HYPOPARATHYROIDISM
 ● OBJECTIVE ASSESSMENT
 – POSITIVE CHVOSTEK’S
 (THINK CHOPSTICKS)
 • FACIAL CONTRACTION AFTER TAPPING THE FACIAL NERVE

70 HYPOPARATHYROIDISM
 ● OBJECTIVE ASSESSMENT
 – POSITIVE TROUSSEAU’S
 (THINK TOURNIQUET)
 • CARPAL SPASM DISTAL TO TOURNIQUET APPLIED FOR THREE MINUTES

71 LAB DIAGNOSTICS
 ● DECREASED SERUM CALCIUM
 ● DECREASED PTH HORMONE
 ● POSSIBLE DECREASED MAGNESIUM
 ● INCREASED PHOSPHATE LEVELS

72 MANAGEMENT OF HYPOPARATHYROIDISM
 1 – RISK FOR INJURY
 – RISK FOR DECREASED CARDIAC OUTPUT
 – KNOWLEDGE DEFICIT

 2 – MONITOR FOR TETANY/SEIZURE ACTIVITY
 – ADMINISTER CALCIUM REPLACEMENT AS ORDERED
 – MONITOR SERUM CALCIUM LEVELS
 – MON ECG FOR DYSRHYTHMIA
 – ASSESS FOR DIG TOXICITY
DIETARY INSTRUCTION

HYPOPARATHYROIDISM

TREATMENT
- **NORMALIZE CALCIUM/PHOSPHATE**
 - CALCIUM GLUCONATE IV IF TETANY IS PRESENT
 - ORAL CALCIUM 1-7 GM /DAY
 - PHOSPHATE BINDERS IF SECONDARY TO RENAL FAILURE
 - CORRECT HYPMAGNESEMIA WITH MAG SULFATE IV OR IM
 - ROCALTROL, IF SECONDARY TO VITAMIN D DEFICIENCY

NURSING CARE OF THE PATIENTS WITH ADRENAL GLAND DISORDERS

ADRENAL GLANDS

2 PARTS:
- **CORTEX**
- **MEDULLA**

ADRENAL CORTEX

ADRENAL CORTEX
- **RELEASES GLUCOCORTICOIDs**
 - CORTISOL
 - CORTISONE
- **RELEASES MINERALOCORTICoids**
 - ALDOSTERONE
- **RELEASES ANDROGENS**

ADRENAL CORTEX

1. **INCREASE BLOOD GLUCOSE**
 - MOBILIZE FATTY ACIDS
 - MUSCLES USE FATTY ACIDS INSTEAD OF GLUCOSE
2. **DECREASE IMMUNE RESPONSE**
 - INHIBITS INFLAMMATORY RESPONSE
 - LESS EFFECTIVE IMMUNE RESPONSE

– DECREASE IN CIRCULATING VOLUME/BP...
– RESULTS IN RENIN RELEASE...
– LEADS TO FORMATION OF ANGIOTENSIN...
– CAUSES ALDOSTERONE RELEASE...
79 WHAT’S THE PRIMARY DIFFERENCE BETWEEN ADH AND ALDOSTERONE?
- ADH causes the distal renal tubules/collecting ducts to reabsorb water. No direct effect on electrolytes.
- Aldosterone retains sodium in loop of Henle and distal tubules/collecting ducts; water follows.

80 ADRENAL MEDULLA

1 ● ADRENALINE
 - EPINEPHRINE
 • INCREASE BLOOD GLUCOSE
 • STIMULATES ACTH RELEASE
 • RATE/FORCE CARDIAC CONTRACTION

2 ● NORADRENALINE
 - NOREPIHOREPHRINE
 • VASOCONSTRICTION THROUGHOUT THE BODY
 • INCREASES RATE/FORCE CARDIAC CONTRACTION

81 IF ADRENALIN STIMULATES ACTH RELEASE....

WHAT EFFECT WILL THAT HAVE ON THE ADRENAL CORTEX?
- Glucocorticoid Release

82 ADRENAL GLAND DISORDERS

● HYPERCORTICAL FUNCTION (From The Adrenal Cortex)
 - CUSHING DISEASE
 - CUSHING SYNDROME
 - HYPERALDOSTERONISM

● HYPOCORTICAL FUNCTION
 - ADDISON’S DISEASE

83 CUSHING’S

● INCIDENCE AND ETIOLOGY
 - WOMEN >MEN
 - AGE 30-50 YEARS
 - LONG TERM STEROID THERAPY
 • TRANSPLANT RECIPIENTS
 • IATROGENIC CUSHING’S SYNDROME

84 CUSHING’S

● PRIMARY (SYNDROME)
 - ADRENAL TUMOR INCREASES CORTISOL PRODUCTION

● SECONDARY
 - PITUITARY OR HYPOTHALAMUS DISORDER INCREASES ACTH PRODUCTION (DISEASE)
ECTOPIC CANCER CELLS PRODUCE ACTH (SYNDROME)

CUSHING’S

● CLINICAL MANIFESTATIONS
 – GENERAL SURVEY
 • BUFFALO HUMP/MOON FACIES
 – NEURO
 • EMOTIONAL LABILITY, FATIGUE
 – CV
 • HYPERTENSION
 – GI
 • PUD, TRUNCAL OBESITY

Figure 63-6
Appearance of a client with Cushing’s disease or syndrome

CUSHING’S

– MS
 • WASTING, WEAKNESS, OSTEOPOROSIS
– INTEGUMENT
 • THIN SKIN, POOR WOUND HEALING, INCREASED BODY HAIR
– RENAL/GU
 • CALCULI, GLYcosuria
 – POLYURIA/POLYDIPSIA
 – HYPOKALEMIA/HYPERNATREMIA
 – REPRODUCTIVE
 • OLIGOMENORRHEA, IMPOTENCE
 • DECREASED LIBIDO

CUSHING’S

● TESTING
● SAME LABS AS FOR ADDISONS, HOWEVER RESULTS WILL BE OPPOSITE
 – PLASMA CORTISOL LEVELS INCREASED
 – ACTH LEVELS
 • DECREASED IN PRIMARY
 • INCREASED IN SECONDARY
 – 24 HOUR URINE FOR CORTISOL
 – Serum Ca+, Na+, Gluc elevated
 – SERUM K+ CAN BE DECREASED

CUSHING’S

● TESTING
 – ACTH SUPPRESSION TEST
 • DEXAMETHASONE ADMINISTRATION
 – HIGH DOSE SUPPRESSES ACTH = PRIMARY CUSHING’S
 – ACTH NOT SUPPRESSED = SECONDARY CUSHING’S BECAUSE DEXAMETHASONE WORKS ON THE PITUITARY ONLY
MANAGEMENT OF CUSHING’S

- FLUID VOLUME EXCESS
 - RISK FOR INJURY R/O EXCESS CORTISOL
 - RISK FOR INFECTION

- ASSESS FOR S/S OF FLUID OVERLOAD; RESP/CV
 - MON I/O, DAILY WEIGHT, VS
 - FLUID RESTRICTION AS ORDERED
 - MONITOR ELECTROLYTES

- MAINTAIN SAFE ENVIRONMENT
- ENCOURAGE USE OF ASSISTIVE DEVICES/NON-SKID SLIPPERS

- MON S/S OF INFECTION
- MAINTAIN ASEPSIS
- MON CBC, TEMP, HR

CUSHING’S

- MANAGEMENT IS SPECIFIC FOR CAUSE AND INCLUDES:
 - RADIATION
 - IMPLANTS OR LOCAL IRRADIATION TO DESTROY THE PITUITARY GLAND. REQUIRES LIFELONG HORMONE REPLACEMENT
 - MEDICATION
 - INOPERABLE MALIGNANCIES
 - SURGERY
 - HYPOPHYSECTOMY
 - ADRENALECTOMY

Management-Pharmacology

- Medications that interfere with ACTH production or adrenal hormone synthesis
 - Mitotane(lysodren) suppresses adrenal cortex activity and decreases peripheral metabolism of corticosteroids
 - Amenoglutethimide(cytadren) and Trilostane(Modrastan) block synthesis of glucocorticoids and adrenal steroids
 - Cyproheptadine(periactin) interferes with ACTH production, therefore decreasing effect on adrenals

Surgery

- When Cushing’s syndrome is caused by adrenal tumor, adrenalectomy is done, one adrenal gland removed.
- If ectopic ACTH producing tumor involved, then bilateral adrenalectomy necessary
- Hypophysectomy—Surgical removal of pituitary, when it is cause of Cushing’s

Figure 63-3
Post-op Care
- Strict monitoring for symptoms of adrenal insufficiency (Addison’s)
- Hemorrhage, wound infection
- When transphenoidal hypophysectomy done, no nose blowing, coughing, sneezing, straining—risk for CSF leak
- Watch for sudden decrease in hypercortisol levels—depression, fatigue, etc. Leveling when maintenance dose reached, however pathologic changes remain

Post-op care cont’d
- Client and family instructed in need for additional replacement during times of stress
- Follow-up essential for adjustment of glucocorticoid regime
- If hypophysectomy done, all hormonal secretions dependent on the pituitary must be evaluated for brief or life-long replacement—glucocorticoids, thyroid hormone, gonadal steroids, ADH

ADRENAL CORTEX HYPOFUNCTION
- PRIMARY
 - DEFICIENCY ARISING FROM ADRENAL CORTEX
 - ADDISON’S DISEASE
 - BILATERAL ADRENALECTOMY
 - OTHER DISEASES
- SECONDARY
 - ACTH DEFICIENCY ARISING FROM PITUITARY
 - TUMORS, SURGERY

ADRENAL CORTEX HYPOFUNCTION

RESULTS IN DEFICIENCY OF:
- GLUCOCORTICOIDs
- MINERALOCORTICOIDs
- ANDROGENs

ADDISON’S DISEASE
- INCIDENCE AND ETIOLOGY
 - WOMEN UNDER AGE OF 60
 - ABRUPT WITHDRAWAL OF LONG TERM STEROID THERAPY
 - INCREASED RISK WITH TB, AIDS
 - SLOW ONSET

ADDISON’S DISEASE
- CLINICAL MANIFESTATIONS
 - METABOLIC
 - HYponatremIA, HYPERkalemIA, HYPOglycemIA FROM ALDOSTERONE DEFICIENCY
 - NEURO
 - LETHARGy, CONFUSION, TREMORS FROM ELECTROlyTE IMBALANCES
ADDISON’S DISEASE

CLINICAL MANIFESTATIONS
- MS
 • WEAKNESS, MUSCLE PAIN, WASTING
- INTEGUMENT
 • HYPER or HYPOPIGMENTATION
- GI
 • ANOREXIA, NAUSEA, DIARRHEA, SALT CRAVING
- REPRODUCTIVE
 • MENSTRUAL CHANGES.
 • S/S NOT SEEN AS MUCH IN MALES BECAUSE TESTES SUPPLY SOME ANDROGENS

DIAGNOSTIC/LAB TESTS
- CORTISOL LEVELS DECREASED
- SER Na+, Gluc DECREASED
- BUN, SER K+ INCREASED
- ACTH STIMULATION TEST
 • CORTISOL RISES WITH PITUITARY
 • NO ELEVATION IN ADRENAL
- CT HEAD

MANAGEMENT
HORMONE REPLACEMENT:
Must Replace Both Cortical Hormones
1. GLUCOCORTICOIDS:
 HYDROCORTISONE

2. MINERALCORTICOIDS
 FLORINEF

NSG CONSIDERATIONS
- TAKE WITH FOOD
- MONITOR FOR BLOOD IN STOOL
- LIFELONG THERAPY
- MONITOR FOR STRESSORS
- MONITOR F&E BALANCE
- REPORT S/S OF CUSHING'S TO MD

MANAGEMENT OF ADDISON’S
- FLUID VOLUME DEFICIT
 - PC: ADDISON CRISIS
– RISK FOR INJURY

– ASSESS FOR S/S OF FLUID DEFICIT; CV, INTEGUMENT, MUCOUS MEMBRANES, URINE OUTPUT
– MON I/O, DAILY WEIGHT, VS
– FLUID REPLACEMENT AS ORDERED (APPROX 3000 CC'S)
– MONITOR ELECTROLYTES
– ASSESS FOR S/S SHOCK

– MON S/S OF ORTHOSTATIC CHANGES
– PROVIDE ASSISTANCE AS NECESSARY

105 MANAGEMENT CONTINUED
● Life-long replacement therapy
● Adequate reserve supply, cannot run out of meds
● Medic alert bracelet
● Kit with IM preparation, Dexamethasone with instructions for administering

106 ADDISONIAN CRISIS
● Critical adrenal insufficiency, may occur with stressors or abrupt withdrawal of glucocorticoids
● Sudden, profound weakness, severe abdominal, leg and back pain, hyperpyrexia, hypothermia, CV collapse

107 MANAGEMENT OF CRISIS
● Reverse shock
● Restore blood circulation
● Replenish body with needed steroids
● Fluid balance is usually restored in 4-6 hours.
● Watch for overdosage of glucocorticoids, may get Cushing’s s/s

108 ADRENAL MEDULLARRY HYPERFUNCTION
● PHEOCHROMOCYTOMA: catecholamine (epinephrine and norepinephrine) secreting tumor of the chromaffin cells of the adrenal medulla
● Causes 0.1% of HTN
● Etiology unknown
● Pregnancy and stress precipitate & amplify symptoms

109 MANIFESTATIONS
● Similar to diabetes mellitus
● Elevated blood sugar
● Glucosuria
● Elevated blood pressure, principal sign
● Pounding headache
● S/s hyperthyroidism
All the manifestations of SNS activity
DIAGNOSIS

- CAREFUL H&P
 - INTERMITTENT HTN
 - CHEST PAIN, N/V
 - HEAT INTOLERANCE, WEIGHT LOSS, TREMORS
- URINARY CATECHOLAMINES ELEVATED
- PLASMA CATECHOLAMINES ELEVATED
- POSITIVE PHENTOLAMINE (REGITINE) TEST
- CT, X-RAY VISUALIZES TUMOR

Management

- Surgery, treatment of choice, remove tumor only. Alert: during anesthesia induction and/or tumor manipulation excessive press or discharge may skyrocket blood pressure
- Alert: may see precipitous fall in BP after surgery
- Control of BP AAT

NURSING CARE OF THE CLIENT WITH POSTERIOR PITUITARY DISORDERS

POSTERIOR PITUITARY

1. 2 P's = 2 hormones

PITUITARY DISORDERS

- ANTERIOR PITUITARY
 - GROWTH HORMONE
 - ACROMEGALY
 - GIGANTISM
- POSTERIOR PITUITARY
 - SIADH
 - DIABETES INSIPIDUS

SIADH

- CAUSES
 - POST-OP FLUID VOLUME SHIFTS
 - ADVERSE EFFECT OF MEDICATIONS
 - HYPOGLYCEMICS
 - BARBITUATES
 - GENERAL ANESTHETICS
 - DIURETICS
SIADH/PATHOPHYSIOLOGY

- TOO MUCH CIRCULATING ADH
- TOO MUCH WATER CONSERVATION IN KIDNEYS
- PLASMA BECOMES DILUTED
- HYPONATREMIA RESULTS FROM DILUTION
- ALDOSTERONE IS SUPPRESSED
- MORE SODIUM IS LOST
- FLUID SHIFTS TO INTERSTITIUM

Clinical manifestations

- CNS: when Na falls below 120mEq/L
 - Lethargy, headache, agitation, disorientation, LOC, coma.
- GI: anorexia, N/V,
- F&E: Na low, plasma osmolality low,
 - no peripheral edema, water retention, not Na.
- X-rays, CT scans - visualize etiologic factors

SIGNS AND SYMPTOMS OF SIADH

- weight gain
- diminished urination
- nausea
- hyponatremia
- lethargy
- a decreased level of consciousness, convulsions, and coma.

DIFFERENTIATING SIADH AND DI

<table>
<thead>
<tr>
<th>Test</th>
<th>DI</th>
<th>SIADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Sodium</td>
<td>> 145 mEq/L</td>
<td>< 130</td>
</tr>
<tr>
<td>Serum osmolality</td>
<td>> 295 mOsm/L</td>
<td>< 275</td>
</tr>
<tr>
<td>Urine osmolality</td>
<td>< 150 mOsm/L</td>
<td>> 1200</td>
</tr>
<tr>
<td>Urine specific gravity</td>
<td>< 1.005</td>
<td>> 1.020</td>
</tr>
</tbody>
</table>

SIADH TREATMENT

- IV SODIUM REPLACEMENT. 3% NACL. NA SHOULD NOT RISE ABOVE 12 MEQ/L/DAY
- FLUID RESTRICTION
- DIURETICS-LASIX
- DECROMYCIN- USED IN DI
- FLUDROCORTISONE (FLORINEF)- NA RETENTION
DIABETES INSIPIDUS
INSUFFICIENT ADH

WHAT GOES IN COMES RIGHT OUT
INABILITY TO CONSERVE WATER AT KIDNEYS

DIABETES INSIPIDUS

● CAUSES
 – NEUROGENIC
 • LESIONS OF HYPOTHALAMUS OR PITUITARY GLAND
 – NEPHROGENIC
 • INADEQUATE RESPONSE TO ADH IN RENAL TUBULES
 • DISORDERS OR DRUGS
 – PSYCHOGENIC
 • FLUID INTAKE DILUTES ADH LEVEL

DIABETES INSIPIDUS

● RISK FACTORS
 ● Head injuries/infections: interfere with hypothalamic pituitary function
 ● Medications: alcohol, lithium carbonate, declomycin—interfere with synthesis or release of ADH or alter renal response.
 ● Renal disease
 ● Idiopathic

DIABETES INSIPIDUS

● NOT ENOUGH CIRCULATING ADH
● IMMEDIATE EXCRETION OF LARGE AMOUNTS OF DILUTE URINE
● THIRST IS TRIGGERED RESULTING IN POLYDIPSIA
● DEHYDRATION AND HYPERNATREMIA ENSUE

SIGNS AND SYMPTOMS OF DI

● Onset may be insidious or abrupt
● Occur at any age
● Polydipsia and polyuria.
 • Enormous quantities of fluid may be ingested, and large volumes (3 to 30 L/day) of very dilute urine (sp gr usually < 1.005 and osmolality < 200 mOsm/L) are excreted.
● Nocturia
● Dehydration/hypovolemia

DIFFERENTIATING SIADH AND DI

<table>
<thead>
<tr>
<th>Test</th>
<th>DI</th>
<th>SIADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Sodium</td>
<td>> 145 mEq/L</td>
<td>< 130</td>
</tr>
</tbody>
</table>
THE WATER DEPRIVATION TEST
Should be performed only while the patient is under constant supervision.
- started in the morning
 - weighing the patient,
 - obtaining serum electrolyte/osmolality
 - measuring urinary osmolality.
- Voided urine is collected hourly
 - sp gr or osmolality (preferable) is measured.

Dehydration is continued until
- (1) orthostatic hypotension and postural tachycardia appear,
- (2) 5% or more of the initial body weight has been lost, or
- (3) the urinary concentration does not increase more than 0.001 sp gr or 30 mOsm/L in sequentially voided specimens.

At this point, serum electrolytes and osmolality are again determined, and 5 U of aqueous vasopressin is injected sc.
- Urine for sp gr or osmolality measurement is collected one final time 60 min postinjection, and the test is terminated.

TREATMENT OF DI
- Nonhormonal therapy:
 - (1) various diuretics
 - thiazides paradoxically reduce urine volume in partial and complete DI and NDI
 - (2) ADH-releasing drugs
 - Chlorpropamide, Carbamazepine, clofibrate
 - causes some release of ADH but also potentiates the action of ADH on the kidney

- Hormonal therapy:
 - Aqueous vasopressin sc or IM 5 to 10 U
 - to provide an antidiuretic response that usually lasts 6 h or less.
 - Synthetic vasopressin bid to qid nasal spray
 - DDAVP (desmopressin acetate, 1-deamino-8-D-arginine vasopressin) intranasally, sc, or IV.
 - has prolonged antidiuretic activity lasting for 12 to 24 h in most patients