Problem Categories

Biological: 12.56, 12.57, 12.66, 12.76, 12.81, 12.93, 12.132.

Conceptual: 12.9, 12.10, 12.11, 12.12, 12.35, 12.36, 12.69, 12.70, 12.71, 12.72, 12.75, 12.83, 12.87, 12.88, 12.89, 12.91, 12.96, 12.97, 12.100, 12.101, 12.103, 12.106, 12.111, 12.112, 12.115, 12.118, 12.119, 12.120.

Descriptive: 12.98, 12.113.

Industrial: 12.113.

Difficulty Level

Easy: 12.9, 12.10, 12.12, 12.15, 12.17, 12.20, 12.23, 12.27, 12.37, 12.55, 12.56, 12.63, 12.69, 12.72, 12.75, 12.77, 12.78, 12.82, 12.83, 12.85, 12.96, 12.98, 12.101, 12.112.

Medium: 12.11, 12.16, 12.18, 12.19, 12.21, 12.22, 12.24, 12.28, 12.35, 12.36, 12.49, 12.50, 12.51, 12.52, 12.57, 12.58, 12.60, 12.61, 12.62, 12.64, 12.65, 12.66, 12.70, 12.71, 12.73, 12.74, 12.76, 12.84, 12.86, 12.87, 12.88, 12.90, 12.91, 12.93, 12.95, 12.97, 12.100, 12.102, 12.103, 12.106, 12.108, 12.109, 12.110, 12.111, 12.115, 12.116, 12.118, 12.123, 12.130, 12.132.

12.9 CsF is an ionic solid; the ion–ion attractions are too strong to be overcome in the dissolving process in benzene. The ion–induced dipole interaction is too weak to stabilize the ion. Nonpolar naphthalene molecules form a molecular solid in which the only interparticle forces are of the weak dispersion type. The same forces operate in liquid benzene causing naphthalene to dissolve with relative ease. Like dissolves like.

12.10 **Strategy:** In predicting solubility, remember the saying: Like dissolves like. A nonpolar solute will dissolve in a nonpolar solvent; ionic compounds will generally dissolve in polar solvents due to favorable ion-dipole interactions; solutes that can form hydrogen bonds with a solvent will have high solubility in the solvent.

Solution: Strong hydrogen bonding (dipole-dipole attraction) is the principal intermolecular attraction in liquid ethanol, but in liquid cyclohexane the intermolecular forces are dispersion forces because cyclohexane is nonpolar. Cyclohexane cannot form hydrogen bonds with ethanol, and therefore cannot attract ethanol molecules strongly enough to form a solution.

12.11 The order of increasing solubility is: \(\text{O}_2 < \text{Br}_2 < \text{LiCl} < \text{CH}_3\text{OH} \). Methanol is miscible with water because of strong hydrogen bonding. LiCl is an ionic solid and is very soluble because of the high polarity of the water molecules. Both oxygen and bromine are nonpolar and exert only weak dispersion forces. Bromine is a larger molecule and is therefore more polarizable and susceptible to dipole–induced dipole attractions.

12.12 The longer the C–C chain, the more the molecule "looks like" a hydrocarbon and the less important the \(−\text{OH} \) group becomes. Hence, as the C–C chain length increases, the molecule becomes less polar. Since "like dissolves like", as the molecules become more nonpolar, the solubility in polar water decreases. The \(−\text{OH} \) group of the alcohols can form strong hydrogen bonds with water molecules, but this property decreases as the chain length increases.
12.15 Percent mass equals the mass of solute divided by the mass of the solution (that is, solute plus solvent) times 100 (to convert to percentage).

(a) \(\frac{5.50 \text{ g NaBr}}{78.2 \text{ g soln}} \times 100\% = 7.03\%\)

(b) \(\frac{31.0 \text{ g KCl}}{31.0 \text{ g} + 152 \text{ g soln}} \times 100\% = 16.9\%\)

(c) \(\frac{4.5 \text{ g toluene}}{4.5 \text{ g} + 29 \text{ g soln}} \times 100\% = 13\%\)

12.16 **Strategy:** We are given the percent by mass of the solute and the mass of the solute. We can use Equation (12.1) of the text to solve for the mass of the solvent (water).

Solution:

(a) The percent by mass is defined as

\[
\text{percent by mass of solute} = \frac{\text{mass of solute}}{\text{mass of solute} + \text{mass of solvent}} \times 100\%
\]

Substituting in the percent by mass of solute and the mass of solute, we can solve for the mass of solvent (water).

\[
16.2\% = \frac{5.00 \text{ g urea}}{5.00 \text{ g urea} + \text{mass of water}} \times 100\%
\]

\[
(0.162)(\text{mass of water}) = 5.00 \text{ g} - (0.162)(5.00\text{g})
\]

\[
\text{mass of water} = 25.9 \text{ g}
\]

(b) Similar to part (a),

\[
1.5\% = \frac{26.2 \text{ g MgCl}_2}{26.2 \text{ g MgCl}_2 + \text{mass of water}} \times 100\%
\]

\[
\text{mass of water} = 1.72 \times 10^3 \text{ g}
\]

12.17 (a) The molality is the number of moles of sucrose (molar mass 342.3 g/mol) divided by the mass of the solvent (water) in kg.

\[
\text{mol sucrose} = 14.3 \text{ g sucrose} \times \frac{1 \text{ mol}}{342.3 \text{ g sucrose}} = 0.0418 \text{ mol}
\]

\[
\text{Molality} = \frac{0.0418 \text{ mol sucrose}}{0.676 \text{ kg H}_2\text{O}} = 0.0618 \text{ m}
\]

(b) \[
\text{Molality} = \frac{7.20 \text{ mol ethylene glycol}}{3.546 \text{ kg H}_2\text{O}} = 2.03 \text{ m}
\]
12.18 \[\text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \]

(a) mass of 1 L soln = \(1000 \text{ mL} \times \frac{1.08 \text{ g}}{1 \text{ mL}} = 1080 \text{ g} \)

mass of water = \(1080 \text{ g} - \left(2.50 \text{ mol} \text{ NaCl} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol} \text{ NaCl}}\right) = 934 \text{ g} = 0.934 \text{ kg} \)

\[m = \frac{2.50 \text{ mol NaCl}}{0.934 \text{ kg H}_2\text{O}} = 2.68 \text{ m} \]

(b) 100 g of the solution contains 48.2 g KBr and 51.8 g H\(_2\)O.

\[
\text{mol of KBr} = \frac{48.2 \text{ g KBr}}{119.0 \text{ g KBr}} = 0.405 \text{ mol KBr}
\]

\[
\text{mass of H}_2\text{O (in kg)} = 51.8 \text{ g H}_2\text{O} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.0518 \text{ kg H}_2\text{O}
\]

\[m = \frac{0.405 \text{ mol KBr}}{0.0518 \text{ kg H}_2\text{O}} = 7.82 \text{ m} \]

12.19 In each case we consider one liter of solution. mass of solution = volume \times density

(a) \[
\text{mass of sugar} = 1.22 \text{ mol sugar} \times \frac{342.3 \text{ g sugar}}{1 \text{ mol sugar}} = 418 \text{ g sugar} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.418 \text{ kg sugar}
\]

\[
\text{mass of soln} = 1000 \text{ mL} \times \frac{1.12 \text{ g}}{1 \text{ mL}} = 1120 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1.120 \text{ kg}
\]

\[
\text{molality} = \frac{1.22 \text{ mol sugar}}{(1.120 - 0.418) \text{ kg H}_2\text{O}} = 1.74 \text{ m}
\]

(b) mass of NaOH = 0.87 \text{ mol NaOH} \times \frac{40.00 \text{ g NaOH}}{1 \text{ mol NaOH}} = 35 \text{ g NaOH}

mass solvent (H\(_2\)O) = 1040 g – 35 g = 1005 g = 1.005 kg

\[
\text{molality} = \frac{0.87 \text{ mol NaOH}}{1.005 \text{ kg H}_2\text{O}} = 0.87 \text{ m}
\]

(c) mass of NaHCO\(_3\) = 5.24 \text{ mol NaHCO}_3 \times \frac{84.01 \text{ g NaHCO}_3}{1 \text{ mol NaHCO}_3} = 440 \text{ g NaHCO}_3

mass solvent (H\(_2\)O) = 1190 g – 440 g = 750 g = 0.750 kg

\[
\text{molality} = \frac{5.24 \text{ mol NaHCO}_3}{0.750 \text{ kg H}_2\text{O}} = 6.99 \text{ m}
\]
12.20 Let’s assume that we have 1.0 L of a 0.010 \(M \) solution.

Assuming a solution density of 1.0 g/mL, the mass of 1.0 L (1000 mL) of the solution is 1000 g or \(1.0 \times 10^3 \) g.

The mass of 0.010 mole of urea is:

\[
0.010 \text{ mol urea} \times \frac{60.06 \text{ g urea}}{1 \text{ mol urea}} = 0.60 \text{ g urea}
\]

The mass of the solvent is:

\[
(m_{\text{solution}}) - (m_{\text{solute}}) = (1.0 \times 10^3 \text{ g}) - (0.60 \text{ g}) = 1.0 \times 10^3 \text{ g} = 1.0 \text{ kg}
\]

\[
m = \frac{\text{moles solute}}{\text{mass solvent}} = \frac{0.010 \text{ mol}}{1.0 \text{ kg}} = 0.010 \text{ m}
\]

12.21 We find the volume of ethanol in 1.00 L of 75 proof gin. Note that 75 proof means \(\left(\frac{75}{2} \right) \% \).

\[
\text{Volume} = 1.00 \text{ L} \times \left(\frac{75}{2} \right) \% = 0.38 \text{ L} = 3.8 \times 10^2 \text{ mL}
\]

\[
\text{Ethanol mass} = (3.8 \times 10^2 \text{ mL}) \times \frac{0.798 \text{ g}}{1 \text{ mL}} = 3.0 \times 10^2 \text{ g}
\]

12.22 (a) Converting mass percent to molality.

Strategy: In solving this type of problem, it is convenient to assume that we start with 100.0 grams of the solution. If the mass of sulfuric acid is 98.0% of 100.0 g, or 98.0 g, the percent by mass of water must be 100.0% – 98.0% = 2.0%. The mass of water in 100.0 g of solution would be 2.0 g. From the definition of molality, we need to find moles of solute (sulfuric acid) and kilograms of solvent (water).

Solution: Since the definition of molality is

\[
\text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}
\]

we first convert 98.0 g \(\text{H}_2\text{SO}_4 \) to moles of \(\text{H}_2\text{SO}_4 \) using its molar mass, then we convert 2.0 g of \(\text{H}_2\text{O} \) to units of kilograms.

\[
98.0 \text{ g} \text{H}_2\text{SO}_4 \times \frac{1 \text{ mol} \text{H}_2\text{SO}_4}{98.09 \text{ g} \text{H}_2\text{SO}_4} = 0.999 \text{ mol} \text{H}_2\text{SO}_4
\]

\[
2.0 \text{ g} \text{H}_2\text{O} \times \frac{1 \text{ kg} \text{H}_2\text{O}}{1000 \text{ g}} = 2.0 \times 10^{-3} \text{ kg} \text{H}_2\text{O}
\]

Lastly, we divide moles of solute by mass of solvent in kg to calculate the molality of the solution.

\[
m = \frac{\text{mol of solute}}{\text{kg of solvent}} = \frac{0.999 \text{ mol}}{2.0 \times 10^{-3} \text{ kg}} = 5.0 \times 10^2 \text{ m}
\]
(b) Converting molality to molarity.

Strategy: From part (a), we know the moles of solute (0.999 mole H\textsubscript{2}SO\textsubscript{4}) and the mass of the solution (100.0 g). To solve for molarity, we need the volume of the solution, which we can calculate from its mass and density.

Solution: First, we use the solution density as a conversion factor to convert to volume of solution.

\[
? \text{ volume of solution} = 100.0 \text{ g} \times \frac{1 \text{ mL}}{1.83 \text{ g}} = 54.6 \text{ mL} = 0.0546 \text{ L}
\]

Since we already know moles of solute from part (a), 0.999 mole H\textsubscript{2}SO\textsubscript{4}, we divide moles of solute by liters of solution to calculate the molarity of the solution.

\[
M = \frac{\text{mol of solute}}{\text{L of soln}} = \frac{0.999 \text{ mol}}{0.0546 \text{ L}} = 18.3 \text{ M}
\]

\[12.23 \text{ mol NH}_3 = 30.0 \text{ g NH}_3 \times \frac{1 \text{ mol NH}_3}{17.03 \text{ g NH}_3} = 1.76 \text{ mol NH}_3\]

Volume of the solution = 100.0 g soln × \(\frac{1 \text{ mL}}{0.982 \text{ g}}\) × \(\frac{1 \text{ L}}{1000 \text{ mL}}\) = 0.102 L

\[
\text{molarity} = \frac{1.76 \text{ mol NH}_3}{0.102 \text{ L soln}} = 17.3 \text{ M}
\]

\[
\text{kg of solvent (H}_2\text{O)} = 70.0 \text{ g H}_2\text{O} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.0700 \text{ kg H}_2\text{O}
\]

molality = \(\frac{1.76 \text{ mol NH}_3}{0.0700 \text{ kg H}_2\text{O}}\) = 25.1 m

12.24 Assume 100.0 g of solution.

(a) The mass of ethanol in the solution is 0.100 × 100.0 g = 10.0 g. The mass of the water is 100.0 g – 10.0 g = 90.0 g = 0.0900 kg. The amount of ethanol in moles is:

\[10.0 \text{ g ethanol} \times \frac{1 \text{ mol}}{46.07 \text{ g}} = 0.217 \text{ mol ethanol}\]

\[
\text{mol solute} \quad \frac{\text{kg solvent}}{0.0900 \text{ kg}} = 0.217 \text{ mol} = 2.41 \text{ m}
\]

(b) The volume of the solution is:

\[100.0 \text{ g ethanol} \times \frac{1 \text{ mL}}{0.984 \text{ g}} = 102 \text{ mL} = 0.102 \text{ L}\]

The amount of ethanol in moles is 0.217 mole [part (a)].

\[
M = \frac{\text{mol solute}}{\text{liters of soln}} = \frac{0.217 \text{ mol}}{0.102 \text{ L}} = 2.13 \text{ M}
\]
12.27 The amount of salt dissolved in 100 g of water is:

\[
\frac{3.20 \text{ g salt}}{9.10 \text{ g H}_2\text{O}} \times 100 \text{ g H}_2\text{O} = 35.2 \text{ g salt}
\]

Therefore, the solubility of the salt is **35.2 g salt/100 g H}_2\text{O}**.

12.28 At 75°C, 155 g of KNO}_3\text{ dissolves in 100 g of water to form 255 g of solution. When cooled to 25°C, only 38.0 g of KNO}_3\text{ remain dissolved. This means that (155 – 38.0) g = 117 g of KNO}_3\text{ will crystallize. The amount of KNO}_3\text{ formed when 100 g of saturated solution at 75°C is cooled to 25°C can be found by a simple unit conversion.}

\[
100 \text{ g saturated soln} \times \frac{117 \text{ g KNO}_3\text{ crystallized}}{255 \text{ g saturated soln}} = 45.9 \text{ g KNO}_3
\]

12.29 The mass of KCl is 10% of the mass of the whole sample or 5.0 g. The KClO}_3\text{ mass is 45 g. If 100 g of water will dissolve 25.5 g of KCl, then the amount of water to dissolve 5.0 g KCl is:}

\[
5.0 \text{ g KCl} \times \frac{100 \text{ g H}_2\text{O}}{25.5 \text{ g KCl}} = 20 \text{ g H}_2\text{O}
\]

The 20 g of water will dissolve:

\[
20 \text{ g H}_2\text{O} \times \frac{7.1 \text{ g KClO}_3}{100 \text{ g H}_2\text{O}} = 1.4 \text{ g KClO}_3
\]

The KClO}_3\text{ remaining undissolved will be:}

\[
(45 - 1.4) \text{ g KClO}_3 = 44 \text{ g KClO}_3
\]

12.35 According to Henry’s law, the solubility of a gas in a liquid increases as the pressure increases \((c = kP)\). The soft drink tastes flat at the bottom of the mine because the carbon dioxide pressure is greater and the dissolved gas is not released from the solution. As the miner goes up in the elevator, the atmospheric carbon dioxide pressure decreases and dissolved gas is released from his stomach.

12.36 We first find the value of \(k\) for Henry’s law

\[
k = \frac{c}{P} = \frac{0.034 \text{ mol/L}}{1 \text{ atm}} = 0.034 \text{ mol/L} \cdot \text{atm}
\]

For atmospheric conditions we write:

\[
c = kP = (0.034 \text{ mol/L} \cdot \text{atm})(0.00030 \text{ atm}) = 1.0 \times 10^{-5} \text{ mol/L}
\]
12.38 **Strategy:** The given solubility allows us to calculate Henry's law constant \(k \), which can then be used to determine the concentration of \(N_2 \) at 4.0 atm. We can then compare the solubilities of \(N_2 \) in blood under normal pressure (0.80 atm) and under a greater pressure that a deep-sea diver might experience (4.0 atm) to determine the moles of \(N_2 \) released when the diver returns to the surface. From the moles of \(N_2 \) released, we can calculate the volume of \(N_2 \) released.

Solution: First, calculate the Henry's law constant, \(k \), using the concentration of \(N_2 \) in blood at 0.80 atm.

\[
k = \frac{c}{P} = \frac{5.6 \times 10^{-4} \text{ mol/L}}{0.80 \text{ atm}} = 7.0 \times 10^{-4} \text{ mol/L-atm}
\]

Next, we can calculate the concentration of \(N_2 \) in blood at 4.0 atm using \(k \) calculated above.

\[
c = kP = (7.0 \times 10^{-4} \text{ mol/L-atm})(4.0 \text{ atm}) = 2.8 \times 10^{-3} \text{ mol/L}
\]

From each of the concentrations of \(N_2 \) in blood, we can calculate the number of moles of \(N_2 \) dissolved by multiplying by the total blood volume of 5.0 L. Then, we can calculate the number of moles of \(N_2 \) released when the diver returns to the surface.

The number of moles of \(N_2 \) in 5.0 L of blood at 0.80 atm is:

\[
(5.6 \times 10^{-4} \text{ mol/L})(5.0 \text{ L}) = 2.8 \times 10^{-3} \text{ mol}
\]

The number of moles of \(N_2 \) in 5.0 L of blood at 4.0 atm is:

\[
(2.8 \times 10^{-3} \text{ mol/L})(5.0 \text{ L}) = 1.4 \times 10^{-2} \text{ mol}
\]

The amount of \(N_2 \) released in moles when the diver returns to the surface is:

\[
(1.4 \times 10^{-2} \text{ mol}) - (2.8 \times 10^{-3} \text{ mol}) = 1.1 \times 10^{-2} \text{ mol}
\]

Finally, we can now calculate the volume of \(N_2 \) released using the ideal gas equation. The total pressure pushing on the \(N_2 \) that is released is atmospheric pressure (1 atm).

The volume of \(N_2 \) released is:

\[
V_{N_2} = \frac{nRT}{P} = \frac{(1.1 \times 10^{-2} \text{ mol})(273 + 37) \text{K}}{(1.0 \text{ atm})(0.0821 \text{ L atm/mol K})} = 0.28 \text{ L}
\]

12.49 The first step is to find the number of moles of sucrose and of water.

Moles sucrose = \[396 \text{ g} \times \frac{1 \text{ mol}}{342.3 \text{ g}}\] = 1.16 mol sucrose

Moles water = \[624 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}}\] = 34.6 mol water
The mole fraction of water is:

$$X_{\text{H}_2\text{O}} = \frac{34.6 \text{ mol}}{34.6 \text{ mol} + 1.16 \text{ mol}} = 0.968$$

The vapor pressure of the solution is found as follows:

$$P_{\text{solution}} = X_{\text{H}_2\text{O}} 	imes P^0_{\text{H}_2\text{O}} = (0.968)(31.8 \text{ mmHg}) = 30.8 \text{ mmHg}$$

12.50 Strategy: From the vapor pressure of water at 20°C and the change in vapor pressure for the solution (2.0 mmHg), we can solve for the mole fraction of sucrose using Equation (12.5) of the text. From the mole fraction of sucrose, we can solve for moles of sucrose. Lastly, we convert from moles to grams of sucrose.

Solution: Using Equation (12.5) of the text, we can calculate the mole fraction of sucrose that causes a 2.0 mmHg drop in vapor pressure.

$$\Delta P = X_{\text{sucrose}} P^0_{\text{water}}$$

$$X_{\text{sucrose}} = \frac{\Delta P}{P^0_{\text{water}}} = \frac{2.0 \text{ mmHg}}{17.5 \text{ mmHg}} = 0.11$$

From the definition of mole fraction, we can calculate moles of sucrose.

$$X_{\text{sucrose}} = \frac{n_{\text{sucrose}}}{n_{\text{water}} + n_{\text{sucrose}}}$$

moles of water = 552 g × \(\frac{1 \text{ mol}}{18.02 \text{ g}}\) = 30.6 mol H₂O

$$X_{\text{sucrose}} = 0.11 = \frac{n_{\text{sucrose}}}{30.6 + n_{\text{sucrose}}}$$

$$n_{\text{sucrose}} = 3.8 \text{ mol sucrose}$$

Using the molar mass of sucrose as a conversion factor, we can calculate the mass of sucrose.

$$\text{mass of sucrose} = 3.8 \text{ mol sucrose} \times \frac{342.3 \text{ g sucrose}}{1 \text{ mol sucrose}} = 1.3 \times 10^3 \text{ g sucrose}$$

12.51 Let us call benzene component 1 and camphor component 2.

$$R_1 = X_1 P^0_1 = \left(\frac{n_1}{n_1 + n_2}\right) P^0_1$$

$$n_1 = 98.5 \text{ g benzene} \times \frac{1 \text{ mol}}{78.11 \text{ g}} = 1.26 \text{ mol benzene}$$

$$n_2 = 24.6 \text{ g camphor} \times \frac{1 \text{ mol}}{152.2 \text{ g}} = 0.162 \text{ mol camphor}$$

$$P_1 = \frac{1.26 \text{ mol}}{(1.26 + 0.162) \text{ mol}} \times 100.0 \text{ mmHg} = 88.6 \text{ mmHg}$$
12.52 For any solution the sum of the mole fractions of the components is always 1.00, so the mole fraction of 1-propanol is 0.700. The partial pressures are:

\[P_{\text{ethanol}} = X_{\text{ethanol}} \times P_{\text{ethanol}}^v = (0.300)(100 \text{ mmHg}) = 30.0 \text{ mmHg} \]

\[P_{1\text{-propanol}} = X_{1\text{-propanol}} \times P_{1\text{-propanol}}^v = (0.700)(37.6 \text{ mmHg}) = 26.3 \text{ mmHg} \]

Is the vapor phase richer in one of the components than the solution? Which component? Should this always be true for ideal solutions?

12.53 (a) First find the mole fractions of the solution components.

\[\text{Moles methanol} = \frac{30.0 \text{ g}}{32.04 \text{ g/mol}} \times \frac{1 \text{ mol}}{32.04 \text{ g}} = 0.936 \text{ mol CH}_3\text{OH} \]

\[\text{Moles ethanol} = \frac{45.0 \text{ g}}{46.07 \text{ g/mol}} \times \frac{1 \text{ mol}}{46.07 \text{ g}} = 0.977 \text{ mol C}_2\text{H}_5\text{OH} \]

\[X_{\text{methanol}} = \frac{0.936 \text{ mol}}{0.936 \text{ mol} + 0.977 \text{ mol}} = 0.489 \]

\[X_{\text{ethanol}} = 1 - X_{\text{methanol}} = 0.511 \]

The vapor pressures of the methanol and ethanol are:

\[P_{\text{methanol}} = (0.489)(94 \text{ mmHg}) = 46 \text{ mmHg} \]

\[P_{\text{ethanol}} = (0.511)(44 \text{ mmHg}) = 22 \text{ mmHg} \]

(b) Since \(n = \frac{PV}{RT} \) and \(V \) and \(T \) are the same for both vapors, the number of moles of each substance is proportional to the partial pressure. We can then write for the mole fractions:

\[X_{\text{methanol}} = \frac{P_{\text{methanol}}}{P_{\text{methanol}} + P_{\text{ethanol}}} = \frac{46 \text{ mmHg}}{46 \text{ mmHg} + 22 \text{ mmHg}} = 0.68 \]

\[X_{\text{ethanol}} = 1 - X_{\text{methanol}} = 0.32 \]

(c) The two components could be separated by fractional distillation. See Section 12.6 of the text.

12.54 This problem is very similar to Problem 12.50.

\[\Delta P = X_{\text{urea}} P_{\text{water}} \]

\[2.50 \text{ mmHg} = X_{\text{urea}}(31.8 \text{ mmHg}) \]

\[X_{\text{urea}} = 0.0786 \]

The number of moles of water is:

\[n_{\text{water}} = \frac{450 \text{ g H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18.02 \text{ g H}_2\text{O}}}{25.0 \text{ mol H}_2\text{O}} = 25.0 \text{ mol H}_2\text{O} \]
\[
X_{\text{urea}} = \frac{n_{\text{urea}}}{n_{\text{water}} + n_{\text{urea}}}
\]

\[
0.0786 = \frac{n_{\text{urea}}}{25.0 + n_{\text{urea}}}
\]

\[
n_{\text{urea}} = 2.13 \text{ mol}
\]

\[
\text{mass of urea} = 2.13 \text{ mol of urea} \times \frac{60.06 \text{ g urea}}{1 \text{ mol urea}} = 128 \text{ g of urea}
\]

12.55 \[\Delta T_b = K_b m = (2.53 \text{C/mol})(2.47 \text{ mol/kg}) = 6.25 \text{C}\]

The new \textbf{boiling point} is 80.1\(^\circ\)C + 6.25\(^\circ\)C = \textit{86.4}\(^\circ\)C

\[\Delta T_f = K_f m = (5.12 \text{C/mol})(2.47 \text{ mol/kg}) = 12.6 \text{C}\]

The new \textbf{freezing point} is 5.5\(^\circ\)C - 12.6\(^\circ\)C = \textit{-7.1}\(^\circ\)C

12.56 \[m = \frac{\Delta T_f}{K_f} = \frac{1.1^\circ\text{C}}{1.86^\circ\text{C/mol}} = 0.59 \text{ m}\]

\[12.57 \text{ METHOD 1:}\] The empirical formula can be found from the percent by mass data assuming a 100.0 g sample.

Moles C = 80.78 g × \frac{1 \text{ mol}}{12.01 \text{ g}} = 6.726 \text{ mol C}

Moles H = 13.56 g × \frac{1 \text{ mol}}{1.008 \text{ g}} = 13.45 \text{ mol H}

Moles O = 5.66 g × \frac{1 \text{ mol}}{16.00 \text{ g}} = 0.354 \text{ mol O}

This gives the formula: \(\text{C}_6\text{H}_{13.45}\text{O}_{0.354}\). Dividing through by the smallest subscript (0.354) gives the empirical formula, \(\text{C}_{19}\text{H}_{38}\text{O}\).

The freezing point depression is \(\Delta T_f = 5.5^\circ\text{C} - 3.37^\circ\text{C} = 2.1^\circ\text{C}\). This implies a solution molality of:

\[m = \frac{\Delta T_f}{K_f} = \frac{2.1^\circ\text{C}}{5.12^\circ\text{C/mol}} = 0.41 \text{ m}\]

Since the solvent mass is 8.50 g or 0.00850 kg, the amount of solute is:

\[\frac{0.41 \text{ mol}}{1 \text{ kg benzene}} \times 0.00850 \text{ kg benzene} = 3.5 \times 10^{-3} \text{ mol}\]

Since 1.00 g of the sample represents \(3.5 \times 10^{-3}\) mol, the molar mass is:

\[\text{molar mass} = \frac{1.00 \text{ g}}{3.5 \times 10^{-3} \text{ mol}} = 286 \text{ g/mol}\]

The mass of the empirical formula is 282 g/mol, so the molecular formula is the same as the empirical formula, \(\text{C}_{19}\text{H}_{38}\text{O}\).
Method 2: Use the freezing point data as above to determine the molar mass.

\[\text{molar mass} = 286 \text{ g/mol} \]

Multiply the mass % (converted to a decimal) of each element by the molar mass to convert to grams of each element. Then, use the molar mass to convert to moles of each element.

\[
\begin{align*}
 n_C &= (0.8078) \times (286 \text{ g}) \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 19.2 \text{ mol C} \\
 n_H &= (0.1356) \times (286 \text{ g}) \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 38.5 \text{ mol H} \\
 n_O &= (0.0566) \times (286 \text{ g}) \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 1.01 \text{ mol O}
\end{align*}
\]

Since we used the molar mass to calculate the moles of each element present in the compound, this method directly gives the molecular formula. The formula is \(\text{C}_{19}\text{H}_{38}\text{O} \).

Solution: If we assume that we have 100 g of the compound, then each percentage can be converted directly to grams. In this sample, there will be 40.0 g of C, 6.7 g of H, and 53.3 g of O. Because the subscripts in the formula represent a mole ratio, we need to convert the grams of each element to moles. The conversion factor needed is the molar mass of each element. Let \(n \) represent the number of moles of each element so that

\[
\begin{align*}
 n_C &= \frac{40.0 \text{ g C}}{12.01 \text{ g C}} = 3.33 \text{ mol C} \\
 n_H &= \frac{6.7 \text{ g H}}{1.008 \text{ g H}} = 6.6 \text{ mol H} \\
 n_O &= \frac{53.3 \text{ g O}}{16.00 \text{ g O}} = 3.33 \text{ mol O}
\end{align*}
\]

Thus, we arrive at the formula \(\text{C}_{3.33}\text{H}_{6.6}\text{O}_{3.3} \), which gives the identity and the ratios of atoms present. However, chemical formulas are written with whole numbers. Try to convert to whole numbers by dividing all the subscripts by the smallest subscript.

\[
\begin{align*}
 \text{C} : \frac{3.33}{3.33} &= 1.00 \\
 \text{H} : \frac{6.6}{3.33} &= 2.0 \\
 \text{O} : \frac{3.33}{3.33} &= 1.00
\end{align*}
\]

This gives us the empirical, \(\text{CH}_2\text{O} \).

Now, we can use the freezing point data to determine the molar mass. First, calculate the molality of the solution.

\[m = \frac{\Delta T_f}{K_f} = \frac{1.56^\circ \text{C}}{8.00^\circ \text{C/m}} = 0.195 \ text{m} \]

Multiplying the molality by the mass of solvent (in kg) gives moles of unknown solute. Then, dividing the mass of solute (in g) by the moles of solute, gives the molar mass of the unknown solute.
\[? \text{ mol of unknown solute} = \frac{0.195 \text{ mol solute}}{1 \text{ kg diphenyl}} \times \frac{0.0278 \text{ kg diphenyl}}{1} = 0.00542 \text{ mol solute} \]

\[\text{molar mass of unknown} = \frac{0.650 \text{ g}}{0.00542 \text{ mol}} = 1.20 \times 10^2 \text{ g/mol} \]

Finally, we compare the empirical molar mass to the molar mass above.

\[\text{empirical molar mass} = 12.01 \text{ g} + 2(1.008 \text{ g}) + 16.00 \text{ g} = 30.03 \text{ g/mol} \]

The number of \((\text{CH}_2\text{O})\) units present in the molecular formula is:

\[\frac{\text{molar mass}}{\text{empirical molar mass}} = \frac{1.20 \times 10^2 \text{ g/mol}}{30.03 \text{ g/mol}} = 4.00 \]

Thus, there are four \(\text{CH}_2\text{O}\) units in each molecule of the compound, so the molecular formula is \((\text{CH}_2\text{O})_4\), or \(\text{C}_4\text{H}_8\text{O}_4\).

METHOD 2:

Strategy: As in Method 1, we determine the molar mass of the unknown from the freezing point data. Once the molar mass is known, we can multiply the mass % of each element (converted to a decimal) by the molar mass to convert to grams of each element. From the grams of each element, the moles of each element can be determined and hence the mole ratio in which the elements combine.

Solution: We use the freezing point data to determine the molar mass. First, calculate the molality of the solution.

\[m = \frac{\Delta T_f}{K_f} = \frac{1.56 \degree C}{8.00 \degree C/m} = 0.195 \text{ m} \]

Multiplying the molality by the mass of solvent (in kg) gives moles of unknown solute. Then, dividing the mass of solute (in g) by the moles of solute, gives the molar mass of the unknown solute.

\[? \text{ mol of unknown solute} = \frac{0.195 \text{ mol solute}}{1 \text{ kg diphenyl}} \times \frac{0.0278 \text{ kg diphenyl}}{1} = 0.00542 \text{ mol solute} \]

\[\text{molar mass of unknown} = \frac{0.650 \text{ g}}{0.00542 \text{ mol}} = 1.20 \times 10^2 \text{ g/mol} \]

Next, we multiply the mass % (converted to a decimal) of each element by the molar mass to convert to grams of each element. Then, we use the molar mass to convert to moles of each element.

\[n_C = (0.400) \times (1.20 \times 10^2 \text{ g/mol}) \times \frac{1 \text{ mol C}}{12.01 \text{ g/mol}} = 4.00 \text{ mol C} \]

\[n_H = (0.067) \times (1.20 \times 10^2 \text{ g/mol}) \times \frac{1 \text{ mol H}}{1.008 \text{ g/mol}} = 7.98 \text{ mol H} \]

\[n_O = (0.533) \times (1.20 \times 10^2 \text{ g/mol}) \times \frac{1 \text{ mol O}}{16.00 \text{ g/mol}} = 4.00 \text{ mol O} \]

Since we used the molar mass to calculate the moles of each element present in the compound, this method directly gives the molecular formula. The formula is \(\text{C}_4\text{H}_8\text{O}_4\).
12.59 We want a freezing point depression of 20°C.

\[m = \frac{\Delta T_f}{K_f} = \frac{20^\circ C}{1.86^\circ C/m} = 10.8 \text{ m} \]

The mass of ethylene glycol (EG) in 6.5 L or 6.5 kg of water is:

\[\text{mass EG} = 6.50 \text{ kg H}_2\text{O} \times \frac{10.8 \text{ mol EG}}{1 \text{ kg H}_2\text{O}} \times \frac{62.07 \text{ g EG}}{1 \text{ mol EG}} = 4.36 \times 10^3 \text{ g EG} \]

The volume of EG needed is:

\[V = \frac{(4.36 \times 10^3 \text{ g EG})}{1 \text{ mL EG} / 1.11 \text{ g EG}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 3.93 \text{ L} \]

Finally, we calculate the boiling point:

\[\Delta T_b = mK_b = (10.8 \text{ m})(0.52^\circ C/m) = 5.6^\circ C \]

The boiling point of the solution will be 100.0^\circ C + 5.6^\circ C = \textbf{105.6}^\circ C.

12.60 We first find the number of moles of gas using the ideal gas equation.

\[n = \frac{PV}{RT} = \frac{748 \text{ mmHg} \times \frac{1 \text{ atm}}{760 \text{ mmHg}}}{(27 + 273) \text{ K}} \times \frac{4.00 \text{ L}}{(27 + 273) \text{ K}} \times \frac{\text{mol} \cdot \text{K}}{0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}} = 0.160 \text{ mol} \]

\[\text{molality} = \frac{0.160 \text{ mol}}{0.0580 \text{ kg benzene}} = 2.76 \text{ m} \]

\[\Delta T_f = K_f m = (5.12^\circ C/m)(2.76 m) = 14.1^\circ C \]

\[\text{freezing point} = 5.5^\circ C - 14.1^\circ C = -8.6^\circ C \]

12.61 The experimental data indicate that the benzoic acid molecules are associated together in pairs in solution due to hydrogen bonding.

![Diagram of benzoic acid molecules associated together in pairs](image)

12.62 First, from the freezing point depression we can calculate the molality of the solution. See Table 12.2 of the text for the normal freezing point and \(K_f \) value for benzene.

\[m = \frac{\Delta T_f}{K_f} = \frac{1.2^\circ C}{5.12^\circ C/m} = 0.23 \text{ m} \]
Multiplying the molality by the mass of solvent (in kg) gives moles of unknown solute. Then, dividing the mass of solute (in g) by the moles of solute, gives the molar mass of the unknown solute.

\[
? \text{ mol of unknown solute} = \frac{0.23 \text{ mol solute}}{1 \text{ kg benzene}} \times 0.0250 \text{ kg benzene}
\]

\[
= 0.0058 \text{ mol solute}
\]

\[
\text{molar mass of unknown} = \frac{2.50 \text{ g}}{0.0058 \text{ mol}} = 4.3 \times 10^2 \text{ g/mol}
\]

The empirical molar mass of \(\text{C}_6\text{H}_5\text{P}\) is 108.1 g/mol. Therefore, the molecular formula is \((\text{C}_6\text{H}_5\text{P})_4\) or \(\text{C}_{24}\text{H}_{20}\text{P}_4\).

12.63 \(\pi = \frac{MRT}{\text{given}}\) \(= (1.36 \text{ mol/L})(0.0821 \text{ L\cdot atm/K	extcdot mol})(22.0 + 273)\text{K} = 32.9 \text{ atm}\)

12.64 \text{ Strategy:} \ We are asked to calculate the molar mass of the polymer. Grams of the polymer are given in the problem, so we need to solve for moles of polymer.

\[
\text{molar mass of polymer} = \frac{\text{grams of polymer}}{\text{moles of polymer}}
\]

From the osmotic pressure of the solution, we can calculate the molarity of the solution. Then, from the molarity, we can determine the number of moles in 0.8330 g of the polymer. What units should we use for \(\pi\) and temperature?

\text{Solution:} \ First, we calculate the molarity using Equation (12.8) of the text.

\[
\pi = MRT
\]

\[
M = \frac{\pi}{RT} = \left(\frac{5.20 \text{ mmHg} \times 1 \text{ atm}}{298 \text{ K} \times 0.0821 \text{ L\cdot atm}}\right) \times \frac{\text{mol \cdot K}}{0.0821 \text{ L\cdot atm}} = 2.80 \times 10^{-4} \text{ M}
\]

Multiplying the molarity by the volume of solution (in L) gives moles of solute (polymer).

\[
? \text{ mol of polymer} = (2.80 \times 10^{-4} \text{ mol/L})(0.170 \text{ L}) = 4.76 \times 10^{-5} \text{ mol polymer}
\]

Lastly, dividing the mass of polymer (in g) by the moles of polymer, gives the molar mass of the polymer.

\[
\text{molar mass of polymer} = \frac{0.8330 \text{ g polymer}}{4.76 \times 10^{-5} \text{ mol polymer}} = 1.75 \times 10^4 \text{ g/mol}
\]
12.65 **Method 1:** First, find the concentration of the solution, then work out the molar mass. The concentration is:

\[
M = \frac{\pi}{RT} = \frac{1.43 \text{ atm}}{(0.0821 \text{ L} \cdot \text{atm/K} \cdot \text{mol})(300 \text{ K})} = 0.0581 \text{ mol/L}
\]

The solution volume is 0.3000 L so the number of moles of solute is:

\[
\frac{0.0581 \text{ mol}}{\text{L}} \times 0.3000 \text{ L} = 0.0174 \text{ mol}
\]

The molar mass is then:

\[
\frac{7.480 \text{ g}}{0.0174 \text{ mol}} = 430 \text{ g/mol}
\]

The empirical formula can be found most easily by assuming a 100.0 g sample of the substance.

- Moles C = \(\frac{41.8 \text{ g}}{12.01 \text{ g/mol}} = 3.48 \text{ mol}\)
- Moles H = \(\frac{4.7 \text{ g}}{1.008 \text{ g/mol}} = 4.7 \text{ mol}\)
- Moles O = \(\frac{37.3 \text{ g}}{16.00 \text{ g/mol}} = 2.33 \text{ mol}\)
- Moles N = \(\frac{16.3 \text{ g}}{14.01 \text{ g/mol}} = 1.16 \text{ mol}\)

This gives the formula: C\(_{3.48}\)H\(_{4.7}\)O\(_{2.33}\)N\(_{1.16}\). Dividing through by the smallest subscript (1.16) gives the empirical formula, C\(_3\)H\(_4\)O\(_2\)N, which has a mass of 86.0 g per formula unit. The molar mass is five times this amount (430 ÷ 86.0 = 5.0), so the *molecular formula* is (C\(_3\)H\(_4\)O\(_2\)N)\(_5\) or C\(_{15}\)H\(_{20}\)O\(_{10}\)N\(_5\).

METHOD 2: Use the molarity data as above to determine the molar mass.

\[
\text{molar mass} = 430 \text{ g/mol}
\]

Multiply the mass % (converted to a decimal) of each element by the molar mass to convert to grams of each element. Then, use the molar mass to convert to moles of each element.

- \(n_C = (0.418) \times (430 \text{ g/mol}) \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 15.0 \text{ mol C}\)
- \(n_H = (0.047) \times (430 \text{ g/mol}) \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 20 \text{ mol H}\)
- \(n_O = (0.373) \times (430 \text{ g/mol}) \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 10.0 \text{ mol O}\)
- \(n_N = (0.163) \times (430 \text{ g/mol}) \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = 5.00 \text{ mol N}\)

Since we used the molar mass to calculate the moles of each element present in the compound, this method directly gives the molecular formula. The formula is C\(_{15}\)H\(_{20}\)O\(_{10}\)N\(_5\).
12.66 We use the osmotic pressure data to determine the molarity.

\[
M = \frac{\pi}{RT} = \frac{4.61 \text{ atm mol K}}{(20 + 273) \text{ K}} \times \frac{\text{mol} \cdot \text{K}}{0.0821 \text{ L} \cdot \text{atm}} = 0.192 \text{ mol/L}
\]

Next we use the density and the solution mass to find the volume of the solution.

\[
\text{mass of soln} = 6.85 \text{ g} + 100.0 \text{ g} = 106.9 \text{ g soln}
\]

\[
\text{volume of soln} = \frac{1 \text{ mL}}{1.024 \text{ g}} \times 106.9 \text{ g soln} = 104.4 \text{ mL} = 0.1044 \text{ L}
\]

Multiplying the molarity by the volume (in L) gives moles of solute (carbohydrate).

\[
\text{mol of solute} = M \times V = (0.192 \text{ mol/L})(0.1044 \text{ L}) = 0.0200 \text{ mol solute}
\]

Finally, dividing mass of carbohydrate by moles of carbohydrate gives the molar mass of the carbohydrate.

\[
\text{molar mass} = \frac{6.85 \text{ g carbohydrate}}{0.0200 \text{ mol carbohydrate}} = 343 \text{ g/mol}
\]

12.69 \(\text{CaCl}_2\) is an ionic compound (why?) and is therefore an electrolyte in water. Assuming that \(\text{CaCl}_2\) is a strong electrolyte and completely dissociates (no ion pairs, van’t Hoff factor \(i = 3\)), the total ion concentration will be \(3 \times 0.35 = 1.05 \text{ m}\), which is larger than the urea (nonelectrolyte) concentration of 0.90 m.

(a) The \(\text{CaCl}_2\) solution will show a larger boiling point elevation.

(b) The \(\text{CaCl}_2\) solution will show a larger freezing point depression. The freezing point of the urea solution will be higher.

(c) The \(\text{CaCl}_2\) solution will have a larger vapor pressure lowering.

12.70 Boiling point, vapor pressure, and osmotic pressure all depend on particle concentration. Therefore, these solutions also have the same boiling point, osmotic pressure, and vapor pressure.

12.71 Assume that all the salts are completely dissociated. Calculate the molality of the ions in the solutions.

(a) 0.10 m \(\text{Na}_3\text{PO}_4\): \(0.10 \text{ m} \times 4 \text{ ions/unit} = 0.40 \text{ m}\)

(b) 0.35 m \(\text{NaCl}\): \(0.35 \text{ m} \times 2 \text{ ions/unit} = 0.70 \text{ m}\)

(c) 0.20 m \(\text{MgCl}_2\): \(0.20 \text{ m} \times 3 \text{ ions/unit} = 0.60 \text{ m}\)

(d) 0.15 m \(\text{C}_6\text{H}_12\text{O}_6\): nonelectrolyte, 0.15 m

(e) 0.15 m \(\text{CH}_3\text{COOH}\): weak electrolyte, slightly greater than 0.15 m

The solution with the lowest molality will have the highest freezing point (smallest freezing point depression): (d) > (e) > (a) > (c) > (b).

12.72 The freezing point will be depressed most by the solution that contains the most solute particles. You should try to classify each solute as a strong electrolyte, a weak electrolyte, or a nonelectrolyte. All three solutions have the same concentration, so comparing the solutions is straightforward. \(\text{HCl}\) is a strong electrolyte, so under ideal conditions it will completely dissociate into two particles per molecule. The concentration of particles will be 1.00 m. Acetic acid is a weak electrolyte, so it will only dissociate to a small extent. The concentration of particles will be greater than 0.50 m, but less than 1.00 m. Glucose is a nonelectrolyte, so glucose molecules remain as glucose molecules in solution. The concentration of particles will be 0.50 m. For these solutions, the order in which the freezing points become lower is:

0.50 m glucose > 0.50 m acetic acid > 0.50 m \(\text{HCl}\)

In other words, the \(\text{HCl}\) solution will have the lowest freezing point (greatest freezing point depression).
12.73 (a) NaCl is a strong electrolyte. The concentration of particles (ions) is double the concentration of NaCl. Note that 135 mL of water has a mass of 135 g (why?).

The number of moles of NaCl is:

\[
21.2 \text{ g NaCl} \times \frac{1 \text{ mol}}{58.44 \text{ g}} = 0.363 \text{ mol NaCl}
\]

Next, we can find the changes in boiling and freezing points \((i = 2)\)

\[
m = \frac{0.363 \text{ mol}}{0.135 \text{ kg}} = 2.70 \text{ m}
\]

\[
\Delta T_b = iK_b m = 2(0.52^\circ C/m)(2.70 m) = 2.8^\circ C
\]

\[
\Delta T_f = iK_f m = 2(1.86^\circ C/m)(2.70 m) = 10.0^\circ C
\]

The **boiling point** is **102.8^\circ C**; the **freezing point** is **-10.0^\circ C**.

(b) Urea is a nonelectrolyte. The particle concentration is just equal to the urea concentration.

The molality of the urea solution is:

\[
\text{moles urea} = 15.4 \text{ g urea} \times \frac{1 \text{ mol urea}}{60.06 \text{ g urea}} = 0.256 \text{ mol urea}
\]

\[
m = \frac{0.256 \text{ mol urea}}{0.0667 \text{ kg H}_2\text{O}} = 3.84 \text{ m}
\]

\[
\Delta T_b = iK_b m = 1(0.52^\circ C/m)(3.84 m) = 2.0^\circ C
\]

\[
\Delta T_f = iK_f m = 1(1.86^\circ C/m)(3.84 m) = 7.14^\circ C
\]

The **boiling point** is **102.0^\circ C**; the **freezing point** is **-7.14^\circ C**.

12.74 Using Equation (12.5) of the text, we can find the mole fraction of the NaCl. We use subscript 1 for H\(_2\)O and subscript 2 for NaCl.

\[
\Delta P = X_2 P_1
\]

\[
X_2 = \frac{\Delta P}{P_1}
\]

\[
X_2 = \frac{23.76 \text{ mmHg} - 22.98 \text{ mmHg}}{23.76 \text{ mmHg}} = 0.03283
\]

Let’s assume that we have 1000 g (1 kg) of water as the solvent, because the definition of molality is moles of solute per kg of solvent. We can find the number of moles of particles dissolved in the water using the definition of mole fraction.

\[
X_2 = \frac{n_2}{n_1 + n_2}
\]

\[
n_1 = 1000 \text{ g H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18.02 \text{ g H}_2\text{O}} = 55.49 \text{ mol H}_2\text{O}
\]
\[\frac{n_2}{55.49 + n_2} = 0.03283 \]

\[n_2 = 1.884 \text{ mol} \]

Since NaCl dissociates to form two particles (ions), the number of moles of NaCl is half of the above result.

\[\text{Moles NaCl} = \frac{1.884 \text{ mol particles}}{2 \text{ mol} \text{ particles}} = 0.9420 \text{ mol} \]

The molality of the solution is:

\[\frac{0.9420 \text{ mol}}{1.000 \text{ kg}} = 0.9420 \text{ m} \]

12.75 Both NaCl and CaCl\(_2\) are strong electrolytes. Urea and sucrose are nonelectrolytes. The NaCl or CaCl\(_2\) will yield more particles per mole of the solid dissolved, resulting in greater freezing point depression. Also, sucrose and urea would make a mess when the ice melts.

12.76 **Strategy:** We want to calculate the osmotic pressure of a NaCl solution. Since NaCl is a strong electrolyte, \(i\) in the van't Hoff equation is 2.

\[\pi = iMRT \]

Since, \(R\) is a constant and \(T\) is given, we need to first solve for the molarity of the solution in order to calculate the osmotic pressure (\(\pi\)). If we assume a given volume of solution, we can then use the density of the solution to determine the mass of the solution. The solution is 0.86\% by mass NaCl, so we can find grams of NaCl in the solution.

Solution: To calculate molarity, let’s assume that we have 1.000 L of solution (1.000 \(\times\) 10\(^3\) mL). We can use the solution density as a conversion factor to calculate the mass of 1.000 \(\times\) 10\(^3\) mL of solution.

\[(1.000 \times 10^3 \text{ mL soln}) \times \frac{1.005 \text{ g soln}}{1 \text{ mL soln}} = 1005 \text{ g of soln} \]

Since the solution is 0.86\% by mass NaCl, the mass of NaCl in the solution is:

\[1005 \text{ g} \times \frac{0.86\%}{100\%} = 8.6 \text{ g NaCl} \]

The molarity of the solution is:

\[\frac{8.6 \text{ g NaCl}}{1.000 \text{ L}} \times \frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}} = 0.15 \text{ M} \]

Since NaCl is a strong electrolyte, we assume that the van't Hoff factor is 2. Substituting \(i\), \(M\), \(R\), and \(T\) into the equation for osmotic pressure gives:

\[\pi = iMRT = (2) \left(\frac{0.15 \text{ mol}}{\text{L}} \right) \left(\frac{0.0821 \text{ L atm}}{\text{mol} \cdot \text{K}} \right) (310 \text{ K}) = 7.6 \text{ atm} \]
12.77 The temperature and molarity of the two solutions are the same. If we divide Equation (12.12) of the text for one solution by the same equation for the other, we can find the ratio of the van't Hoff factors in terms of the osmotic pressures ($i = 1$ for urea).

$$\frac{\pi_{\text{CaCl}_2}}{\pi_{\text{urea}}} = \frac{iMRT}{MRT} = i = \frac{0.605 \text{ atm}}{0.245 \text{ atm}} = 2.47$$

12.78 From Table 12.3 of the text, $i = 1.3$

$$\frac{\pi}{\text{MRT}} = (1.3) \left(\frac{0.0500 \text{ mol}}{L} \right) \left(\frac{0.0821 \text{ L atm}}{\text{mol K}} \right)(298 \text{ K})$$

$$\pi = 1.6 \text{ atm}$$

12.81 For this problem we must find the solution mole fractions, the molality, and the molarity. For molarity, we can assume the solution to be so dilute that its density is 1.00 g/mL. We first find the number of moles of lysozyme and of water.

$$n_{\text{lysozyme}} = 0.100 \text{ g} \times \frac{1 \text{ mol}}{13930 \text{ g}} = 7.18 \times 10^{-6} \text{ mol}$$

$$n_{\text{water}} = 150 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} = 8.32 \text{ mol}$$

Vapor pressure lowering:

$$\Delta P = x_{\text{lysozyme}} P^0_{\text{water}} = \frac{n_{\text{lysozyme}}}{n_{\text{lysozyme}} + n_{\text{water}}} (23.76 \text{ mmHg})$$

$$\Delta P = \frac{7.18 \times 10^{-6} \text{ mol}}{(7.18 \times 10^{-6} + 8.32) \text{ mol}} (23.76 \text{ mmHg}) = 2.05 \times 10^{-5} \text{ mmHg}$$

Freezing point depression:

$$\Delta T_f = K_f m = (1.86 \degree \text{C/mol kg}) \left(\frac{7.18 \times 10^{-6} \text{ mol}}{0.150 \text{ kg}} \right) = 8.90 \times 10^{-5} \degree \text{C}$$

Boiling point elevation:

$$\Delta T_b = K_b m = (0.52 \degree \text{C/mol kg}) \left(\frac{7.18 \times 10^{-6} \text{ mol}}{0.150 \text{ kg}} \right) = 2.5 \times 10^{-5} \degree \text{C}$$

Osmotic pressure:

As stated above, we assume the density of the solution is 1.00 g/mL. The volume of the solution will be 150 mL.

$$\pi = \frac{0.150 \text{ L}}{7.18 \times 10^{-6} \text{ mol}} \left(\frac{0.0821 \text{ L atm/mol K}}{298 \text{ K}} \right) = 1.17 \times 10^{-3} \text{ atm} = 0.889 \text{ mmHg}$$

Note that only the osmotic pressure is large enough to measure.

12.82 At constant temperature, the osmotic pressure of a solution is proportional to the molarity. When equal volumes of the two solutions are mixed, the molarity will just be the mean of the molarities of the two solutions (assuming additive volumes). Since the osmotic pressure is proportional to the molarity, the osmotic pressure of the solution will be the mean of the osmotic pressure of the two solutions.

$$\pi = \frac{2.4 \text{ atm} + 4.6 \text{ atm}}{2} = 3.5 \text{ atm}$$
12.83
Water migrates through the semipermeable cell walls of the cucumber into the concentrated salt solution. When we go swimming in the ocean, why don't we shrivel up like a cucumber? When we swim in fresh water pool, why don't we swell up and burst?

12.84
(a) We use Equation (12.4) of the text to calculate the vapor pressure of each component.

\[P_i = X_i P^0_i \]

First, you must calculate the mole fraction of each component.

\[X_A = \frac{n_A}{n_A + n_B} = \frac{1.00 \text{ mol}}{1.00 \text{ mol} + 1.00 \text{ mol}} = 0.500 \]

Similarly,

\[X_B = 0.500 \]

Substitute the mole fraction calculated above and the vapor pressure of the pure solvent into Equation (12.4) to calculate the vapor pressure of each component of the solution.

\[P_A = X_A P^0_A = (0.500)(76 \text{ mmHg}) = 38 \text{ mmHg} \]

\[P_B = X_B P^0_B = (0.500)(132 \text{ mmHg}) = 66 \text{ mmHg} \]

The total vapor pressure is the sum of the vapor pressures of the two components.

\[P_{\text{Total}} = P_A + P_B = 38 \text{ mmHg} + 66 \text{ mmHg} = 104 \text{ mmHg} \]

(b) This problem is solved similarly to part (a).

\[X_A = \frac{n_A}{n_A + n_B} = \frac{2.00 \text{ mol}}{2.00 \text{ mol} + 5.00 \text{ mol}} = 0.286 \]

Similarly,

\[X_B = 0.714 \]

\[P_A = X_A P^0_A = (0.286)(76 \text{ mmHg}) = 22 \text{ mmHg} \]

\[P_B = X_B P^0_B = (0.714)(132 \text{ mmHg}) = 94 \text{ mmHg} \]

\[P_{\text{Total}} = P_A + P_B = 22 \text{ mmHg} + 94 \text{ mmHg} = 116 \text{ mmHg} \]

12.85
\(\Delta T_i = iK_i m \)

\(i = \frac{\Delta T_i}{K_i m} = \frac{2.6}{(1.86)(0.40)} = 3.5 \)

12.86
From the osmotic pressure, you can calculate the molarity of the solution.

\[M = \frac{\pi}{RT} = \left(\frac{30.3 \text{ mmHg} \times 1 \text{ atm}}{760 \text{ mmHg}} \right) \times \frac{\text{mol} \cdot K}{0.0821 \text{ L} \cdot \text{atm}} = 1.58 \times 10^{-3} \text{ mol/L} \]
Multiplying molarity by the volume of solution in liters gives the moles of solute.

\[(1.58 \times 10^{-3} \text{ mol solute/L soln}) \times (0.262 \text{ L soln}) = 4.14 \times 10^{-4} \text{ mol solute} \]

Divide the grams of solute by the moles of solute to calculate the molar mass.

\[\text{molar mass of solute} = \frac{1.22 \text{ g}}{4.14 \times 10^{-4} \text{ mol}} = 2.95 \times 10^{3} \text{ g/mol} \]

12.87 One manometer has pure water over the mercury, one manometer has a 1.0 \(M \) solution of \(\text{NaCl} \) and the other manometer has a 1.0 \(M \) solution of urea. The pure water will have the highest vapor pressure and will thus force the mercury column down the most; column X. Both the salt and the urea will lower the overall pressure of the water. However, the salt dissociates into sodium and chloride ions (van’t Hoff factor \(i = 2 \)), whereas urea is a molecular compound with a van’t Hoff factor of 1. Therefore the urea solution will lower the pressure only half as much as the salt solution. \(Y \) is the \(\text{NaCl} \) solution and \(Z \) is the urea solution.

Assuming that you knew the temperature, could you actually calculate the distance from the top of the solution to the top of the manometer?

12.88 Solve Equation (12.7) of the text algebraically for molality (\(m \)), then substitute \(\Delta T_f \) and \(K_f \) into the equation to calculate the molality. You can find the normal freezing point for benzene and \(K_f \) for benzene in Table 12.2 of the text.

\[\Delta T_f = 5.5^\circ C - 3.9^\circ C = 1.6^\circ C \]

\[m = \frac{\Delta T_f}{K_f} = \frac{1.6^\circ C}{5.12^\circ C/\text{mol}} = 0.31 \text{ m} \]

Multiplying the molality by the mass of solvent (in kg) gives moles of unknown solute. Then, dividing the mass of solute (in g) by the moles of solute, gives the molar mass of the unknown solute.

\[\text{mol of unknown solute} = \frac{0.31 \text{ mol solute}}{1 \text{ kg benzene}} \times (8.0 \times 10^{-3} \text{ kg benzene}) \]

\[= 2.5 \times 10^{-3} \text{ mol solute} \]

\[\text{molar mass of unknown} = \frac{0.50 \text{ g}}{2.5 \times 10^{-3} \text{ mol}} = 2.0 \times 10^{2} \text{ g/mol} \]

The molar mass of cocaine \(\text{C}_{17}\text{H}_{21}\text{NO}_4 \) = 303 g/mol, so the compound is not cocaine. We assume in our analysis that the compound is a pure, monomeric, nonelectrolyte.

12.89 The pill is in a hypotonic solution. Consequently, by osmosis, water moves across the semipermeable membrane into the pill. The increase in pressure pushes the elastic membrane to the right, causing the drug to exit through the small holes at a constant rate.

12.90 The molality of the solution assuming \(\text{AlCl}_3 \) to be a nonelectrolyte is:

\[\text{mol AlCl}_3 = 1.00 \text{ g AlCl}_3 \times \frac{1 \text{ mol AlCl}_3}{133.3 \text{ g AlCl}_3} = 0.00750 \text{ mol AlCl}_3 \]

\[m = \frac{0.00750 \text{ mol}}{0.0500 \text{ kg}} = 0.150 \text{ m} \]
The molality calculated with Equation (12.7) of the text is:

\[
m = \frac{\Delta T_f}{K_f} = \frac{1.11^\circ C}{1.86^\circ C/m} = 0.597 \text{ m}
\]

The ratio \(\frac{0.597}{0.150} \) is 4. Thus each \(\text{AlCl}_3 \) dissociates as follows:

\[
\text{AlCl}_3(s) \rightarrow \text{Al}^{3+}(aq) + 3\text{Cl}^-(aq)
\]

12.91 Reverse osmosis uses high pressure to force water from a more concentrated solution to a less concentrated one through a semipermeable membrane. Desalination by reverse osmosis is considerably cheaper than by distillation and avoids the technical difficulties associated with freezing.

To reverse the osmotic migration of water across a semipermeable membrane, an external pressure exceeding the osmotic pressure must be applied. To find the osmotic pressure of 0.70 \(M \) \(\text{NaCl} \) solution, we must use the van’t Hoff factor because \(\text{NaCl} \) is a strong electrolyte and the total ion concentration becomes \(2(0.70 \text{ M}) = 1.4 \text{ M} \).

The osmotic pressure of sea water is:

\[
\pi = iMRT = 2(0.70 \text{ mol/L})(0.0821 \text{ atm/mol L}) (298 \text{ K}) = 34 \text{ atm}
\]

To cause reverse osmosis a pressure in excess of 34 atm must be applied.

12.92 First, we tabulate the concentration of all of the ions. Notice that the chloride concentration comes from more than one source.

\[
\begin{align*}
\text{MgCl}_2: & \quad \text{If } [\text{MgCl}_2] = 0.054 \text{ M}, \quad [\text{Mg}^{2+}] = 0.054 \text{ M} \quad [\text{Cl}^-] = 2 \times 0.054 \text{ M} \\
\text{Na}_2\text{SO}_4: & \quad \text{If } [\text{Na}_2\text{SO}_4] = 0.051 \text{ M}, \quad [\text{Na}^+] = 2 \times 0.051 \text{ M} \quad [\text{SO}_4^{2-}] = 0.051 \text{ M} \\
\text{CaCl}_2: & \quad \text{If } [\text{CaCl}_2] = 0.010 \text{ M}, \quad [\text{Ca}^{2+}] = 0.010 \text{ M} \quad [\text{Cl}^-] = 2 \times 0.010 \text{ M} \\
\text{NaHCO}_3: & \quad \text{If } [\text{NaHCO}_3] = 0.0020 \text{ M} \quad [\text{Na}^+] = 0.0020 \text{ M} \quad [\text{HCO}_3^-] = 0.0020 \text{ M} \\
\text{KCl:} & \quad \text{If } [\text{KCl}] = 0.0090 \text{ M} \quad [\text{K}^+] = 0.0090 \text{ M} \quad [\text{Cl}^-] = 0.0090 \text{ M}
\end{align*}
\]

The subtotal of chloride ion concentration is:

\[
[\text{Cl}^-] = (2 \times 0.0540) + (2 \times 0.010) + (0.0090) = 0.137 \text{ M}
\]

Since the required \([\text{Cl}^-]\) is 2.60 \(M \), the difference \((2.60 - 0.137 = 2.46 \text{ M})\) must come from \(\text{NaCl} \).

The subtotal of sodium ion concentration is:

\[
[\text{Na}^+] = (2 \times 0.051) + (0.0020) = 0.104 \text{ M}
\]

Since the required \([\text{Na}^+]\) is 2.56 \(M \), the difference \((2.56 - 0.104 = 2.46 \text{ M})\) must come from \(\text{NaCl} \).

Now, calculating the mass of the compounds required:

\[
\begin{align*}
\text{NaCl:} & \quad 2.46 \text{ mol} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol NaCl}} = 143.8 \text{ g} \\
\text{MgCl}_2: & \quad 0.054 \text{ mol} \times \frac{95.21 \text{ g MgCl}_2}{1 \text{ mol MgCl}_2} = 5.14 \text{ g} \\
\text{Na}_2\text{SO}_4: & \quad 0.051 \text{ mol} \times \frac{142.1 \text{ g Na}_2\text{SO}_4}{1 \text{ mol Na}_2\text{SO}_4} = 7.25 \text{ g}
\end{align*}
\]
CHAPTER 12: PHYSICAL PROPERTIES OF SOLUTIONS

CaCl₂: \[0.010 \text{ mol} \times \frac{111.0 \text{ g CaCl}_2}{1 \text{ mol CaCl}_2} = 1.11 \text{ g}\]

KCl: \[0.0090 \text{ mol} \times \frac{74.55 \text{ g KCl}}{1 \text{ mol KCl}} = 0.67 \text{ g}\]

NaHCO₃: \[0.0020 \text{ mol} \times \frac{84.01 \text{ g NaHCO}_3}{1 \text{ mol NaHCO}_3} = 0.17 \text{ g}\]

12.93 (a) Using Equation (12.8) of the text, we find the molarity of the solution.

\[M = \frac{\pi}{RT} = \frac{0.257 \text{ atm}}{(0.0821 \text{ L atm/mol K})(298 \text{ K})} = 0.0105 \text{ mol/L}\]

This is the combined concentration of all the ions. The amount dissolved in 10.0 mL (0.01000 L) is

\[? \text{ moles} = \frac{0.0105 \text{ mol}}{1 \text{ L}} \times 0.01000 \text{ L} = 1.05 \times 10^{-4} \text{ mol}\]

Since the mass of this amount of protein is 0.225 g, the apparent molar mass is

\[\frac{0.225 \text{ g}}{1.05 \times 10^{-4} \text{ mol}} = 2.14 \times 10^3 \text{ g/mol}\]

(b) We need to use a van’t Hoff factor to take into account the fact that the protein is a strong electrolyte. The van’t Hoff factor will be \(i = 21\) (why?).

\[M = \frac{\pi}{iRT} = \frac{0.257 \text{ atm}}{(21)(0.0821 \text{ L atm/mol K})(298 \text{ K})} = 5.00 \times 10^{-4} \text{ mol/L}\]

This is the actual concentration of the protein. The amount in 10.0 mL (0.01000 L) is

\[\frac{5.00 \times 10^{-4} \text{ mol}}{1 \text{ L}} \times 0.01000 \text{ L} = 5.00 \times 10^{-6} \text{ mol}\]

Therefore the actual molar mass is:

\[\frac{0.225 \text{ g}}{5.00 \times 10^{-6} \text{ mol}} = 4.50 \times 10^4 \text{ g/mol}\]

12.94 Solution A: Let molar mass be \(\mathcal{M}\).

\[\Delta P = X_A \rho_A\]

\[(760 - 754.5) = X_A(760)\]

\[X_A = 7.237 \times 10^{-3}\]

\[n = \frac{\text{mass}}{\text{molar mass}}\]

\[X_A = \frac{n_A}{n_A + n_{\text{water}}} = \frac{5.00/\mathcal{M}}{5.00/\mathcal{M} + 18.02} = 7.237 \times 10^{-3}\]

\[\mathcal{M} = 124 \text{ g/mol}\]
Solution B: Let molar mass be \mathcal{M}

\[\Delta P = X_B f_B \]

\[X_B = 7.237 \times 10^{-3} \]

\[n = \frac{\text{mass}}{\text{molar mass}} \]

\[X_B = \frac{n_B}{n_B + n_{\text{benzene}}} = \frac{2.31/\mathcal{M}}{2.31/\mathcal{M} + 100/78.11} = 7.237 \times 10^{-3} \]

\[\mathcal{M} = 248 \text{ g/mol} \]

The molar mass in benzene is about twice that in water. This suggests some sort of dimerization is occurring in a nonpolar solvent such as benzene.

12.95 \[2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2 \]

\[10 \text{ mL} \times \frac{3.0 \text{ g} \text{H}_2\text{O}_2}{100 \text{ mL}} \times \frac{1 \text{ mol} \text{H}_2\text{O}_2}{34.02 \text{ g} \text{H}_2\text{O}_2} \times \frac{1 \text{ mol} \text{O}_2}{2 \text{ mol} \text{H}_2\text{O}_2} = 4.4 \times 10^{-3} \text{ mol} \text{O}_2 \]

(a) Using the ideal gas law:

\[V = \frac{nRT}{P} = \frac{(4.4 \times 10^{-3} \text{ mol} \text{O}_2)(0.0821 \text{ L atm/mol K})(273 \text{ K})}{1.0 \text{ atm}} = 99 \text{ mL} \]

(b) The ratio of the volumes:

\[\frac{99 \text{ mL}}{10 \text{ mL}} = 9.9 \]

Could we have made the calculation in part (a) simpler if we used the fact that 1 mole of all ideal gases at STP occupies a volume of 22.4 L?

12.96 As the chain becomes longer, the alcohols become more like hydrocarbons (nonpolar) in their properties. The alcohol with five carbons (n-pentanol) would be the best solvent for iodine (a) and n-pentane (c) (why?). Methanol (CH$_3$OH) is the most water like and is the best solvent for an ionic solid like KBr.

12.97 (a) Boiling under reduced pressure.

(b) CO$_2$ boils off, expands and cools, condensing water vapor to form fog.

12.98 I$_2$ – H$_2$O: Dipole - induced dipole.

I$_3^-$ – H$_2$O: Ion - dipole. Stronger interaction causes more I$_2$ to be converted to I$_3^-$.

12.99 Let the 1.0 M solution be solution 1 and the 2.0 M solution be solution 2. Due to the higher vapor pressure of solution 1, there will be a net transfer of water from beaker 1 to beaker 2 until the vapor pressures of the two solutions are equal. In other words, at equilibrium, the concentration in the two beakers is equal.

At equilibrium,

\[M_1 = M_2 \]

Initially, there is 0.050 mole glucose in solution 1 and 0.10 mole glucose in solution 2, and the volume of both solutions is 0.050 L. The volume of solution 1 will decrease, and the volume of solution 2 will increase by the same volume. Let x be the change in volume.
The final volumes are:

solution 1: \((50 – 16.7)\text{ mL} = 33.3 \text{ mL}\)

solution 2: \((50 + 16.7)\text{ mL} = 66.7 \text{ mL}\)

12.100 (a) If the membrane is permeable to all the ions and to the water, the result will be the same as just removing the membrane. You will have two solutions of equal NaCl concentration.

(b) This part is tricky. The movement of one ion but not the other would result in one side of the apparatus acquiring a positive electric charge and the other side becoming equally negative. This has never been known to happen, so we must conclude that migrating ions always drag other ions of the opposite charge with them. In this hypothetical situation only water would move through the membrane from the dilute to the more concentrated side.

(c) This is the classic osmosis situation. Water would move through the membrane from the dilute to the concentrated side.

12.101 To protect the red blood cells and other cells from shrinking (in a hypertonic solution) or expanding (in a hypotonic solution).

12.102 First, we calculate the number of moles of HCl in 100 g of solution.

\[
n_{\text{HCl}} = \frac{100 \text{ g soln}}{1 \text{ g HCl}} \times \frac{37.7 \text{ g HCl}}{100 \text{ g soln}} \times \frac{1 \text{ mol HCl}}{36.46 \text{ g HCl}} = 1.03 \text{ mol HCl}
\]

Next, we calculate the volume of 100 g of solution.

\[
V = 100 \text{ g} \times \frac{1 \text{ mL}}{1.19 \text{ g}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.0840 \text{ L}
\]

Finally, the molarity of the solution is:

\[
\frac{1.03 \text{ mol}}{0.0840 \text{ L}} = 12.3 \text{ M}
\]

12.103 (a) Seawater has a larger number of ionic compounds dissolved in it; thus the boiling point is elevated.

(b) Carbon dioxide escapes from an opened soft drink bottle because gases are less soluble in liquids at lower pressure (Henry’s law).

(c) As you proved in Problem 12.20, at dilute concentrations molality and molarity are almost the same because the density of the solution is almost equal to that of the pure solvent.

(d) For colligative properties we are concerned with the number of solute particles in solution relative to the number of solvent particles. Since in colligative particle measurements we frequently are dealing with changes in temperature (and since density varies with temperature), we need a concentration unit that is temperature invariant. We use units of moles per kilogram of mass (molality) rather than moles per liter of solution (molarity).

(e) Methanol is very water soluble (why?) and effectively lowers the freezing point of water. However in the summer, the temperatures are sufficiently high so that most of the methanol would be lost to vaporization.
12.104 Let the mass of NaCl be \(x \) g. Then, the mass of sucrose is \((10.2 - x)\) g.

We know that the equation representing the osmotic pressure is:

\[
\pi = MRT
\]

\(R \) and \(T \) are given. Using this equation and the definition of molarity, we can calculate the percentage of NaCl in the mixture.

\[
\text{molarity} = \frac{\text{mol solute}}{L \text{ soln}}
\]

Remember that NaCl dissociates into two ions in solution; therefore, we multiply the moles of NaCl by two.

\[
\begin{align*}
\text{mol solute} &= 2 \left(x \text{ g NaCl} \times \frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}} \right) + (10.2 - x) \text{ g sucrose} \times \frac{1 \text{ mol sucrose}}{342.3 \text{ g sucrose}} \\
\text{mol solute} &= 0.03422x + 0.02980 - 0.002921x \\
\text{mol solute} &= 0.03130x + 0.02980
\end{align*}
\]

\[
\text{Molarity of solution} = \frac{\text{mol solute}}{L \text{ soln}} = \frac{(0.03130x + 0.02980) \text{ mol}}{0.250 \text{ L}}
\]

Substitute molarity into the equation for osmotic pressure to solve for \(x \).

\[
\pi = MRT
\]

\[
7.32 \text{ atm} = \left(\frac{(0.03130x + 0.02980) \text{ mol}}{0.250 \text{ L}} \right) \left(\frac{0.0821 \text{ L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} \right) (296 \text{ K})
\]

\[
0.0753 = 0.03130x + 0.02980
\]

\[
x = 1.45 \text{ g} = \text{mass of NaCl}
\]

\[
\text{Mass % NaCl} = \frac{1.45 \text{ g}}{10.2 \text{ g}} \times 100\% = 14.2\%
\]

12.105 \(\Delta T_f = 5.5 - 2.2 = 3.3^\circ C \)

\(m = \frac{\Delta T_f}{K_f} = \frac{3.3}{5.12} = 0.645 \) m

\(C_{10}H_8: 128.2 \text{ g/mol} \)

\(C_{6}H_{12}: 84.16 \text{ g/mol} \)

Let \(x \) = mass of \(\text{C}_6\text{H}_{12} \) (in grams).

Using,

\[
m = \frac{\text{mol solute}}{\text{kg solvent}} \quad \text{and} \quad \text{mol} = \frac{\text{mass}}{\text{molar mass}}
\]

\[
\begin{align*}
0.645 &= \frac{x}{84.16} + \frac{1.32 - x}{128.2} \\
0.0122 &= \frac{128.2x + 111.1 - 84.16x}{(84.16)(128.2)}
\end{align*}
\]

\[
x = 0.47 \text{ g}
\]
\[
\% C_8 H_{12} = \frac{0.47}{1.32} \times 100\% = 36\%
\]
\[
\% C_{10} H_8 = \frac{0.86}{1.32} \times 100\% = 65\%
\]

The percentages don’t add up to 100% because of rounding procedures.

12.106 (a) Solubility decreases with increasing lattice energy.
(b) Ionic compounds are more soluble in a polar solvent.
(c) Solubility increases with enthalpy of hydration of the cation and anion.

12.107 The completed table is shown below:

<table>
<thead>
<tr>
<th>Attractive Forces</th>
<th>Deviation from Raoult’s</th>
<th>(\Delta H_{\text{solution}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (\leftrightarrow) A, B (\leftrightarrow) B > A (\leftrightarrow) B</td>
<td>Positive</td>
<td>Positive (endothermic)</td>
</tr>
<tr>
<td>A (\leftrightarrow) A, B (\leftrightarrow) B < A (\leftrightarrow) B</td>
<td>Negative</td>
<td>Negative (exothermic)</td>
</tr>
<tr>
<td>A (\leftrightarrow) A, B (\leftrightarrow) B = A (\leftrightarrow) B</td>
<td>Zero</td>
<td>Zero</td>
</tr>
</tbody>
</table>

The first row represents a Case 1 situation in which A’s attract A’s and B’s attract B’s more strongly than A’s attract B’s. As described in Section 12.6 of the text, this results in positive deviation from Raoult’s law (higher vapor pressure than calculated) and positive heat of solution (endothermic).

In the second row a negative deviation from Raoult’s law (lower than calculated vapor pressure) means A’s attract B’s better than A’s attract A’s and B’s attract B’s. This causes a negative (exothermic) heat of solution.

In the third row a zero heat of solution means that A–A, B–B, and A–B interparticle attractions are all the same. This corresponds to an ideal solution which obeys Raoult’s law exactly.

What sorts of substances form ideal solutions with each other?

12.108 molality = \[
\frac{98.0 \text{ g H}_2\text{SO}_4 \times \frac{1 \text{ mol H}_2\text{SO}_4}{98.09 \text{ g H}_2\text{SO}_4}}{2.0 \text{ g H}_2\text{O} \times \frac{1 \text{ kg H}_2\text{O}}{1000 \text{ g H}_2\text{O}}} = 5.0 \times 10^2 \text{ m}
\]

We can calculate the density of sulfuric acid from the molarity.

\[
\text{molarity} = 18 \, M = \frac{18 \text{ mol H}_2\text{SO}_4}{1 \text{ L soln}}
\]

The 18 mol of H\textsubscript{2}SO\textsubscript{4} has a mass of:

\[
18 \text{ mol H}_2\text{SO}_4 \times \frac{98.0 \text{ g H}_2\text{SO}_4}{1 \text{ mol H}_2\text{SO}_4} = 1.8 \times 10^3 \text{ g H}_2\text{SO}_4
\]

1 L = 1000 mL

\[
\text{density} = \frac{\text{mass H}_2\text{SO}_4}{\text{volume}} = \frac{1.8 \times 10^3 \text{ g}}{1000 \text{ mL}} = 1.80 \text{ g/mL}
\]
12.109 Let’s assume we have 100 g of solution. The 100 g of solution will contain 70.0 g of HNO₃ and 30.0 g of H₂O.

\[
\text{mol solute (HNO}_3\text{)} = \frac{70.0 \text{ g HNO}_3}{63.02 \text{ g HNO}_3} = 1.11 \text{ mol HNO}_3
\]

\[
\text{kg solvent (H}_2\text{O)} = \frac{30.0 \text{ g H}_2\text{O}}{1000 \text{ g}} = 0.0300 \text{ kg H}_2\text{O}
\]

\[
\text{molality} = \frac{1.11 \text{ mol HNO}_3}{0.0300 \text{ kg H}_2\text{O}} = 37.0 \text{ m}
\]

To calculate the density, let’s again assume we have 100 g of solution. Since,

\[
d = \frac{\text{mass}}{\text{volume}}
\]

we know the mass (100 g) and therefore need to calculate the volume of the solution. We know from the molarity that 15.9 mol of HNO₃ are dissolved in a solution volume of 1000 mL. In 100 g of solution, there are 1.11 moles HNO₃ (calculated above). What volume will 1.11 moles of HNO₃ occupy?

\[
1.11 \text{ mol HNO}_3 \times \frac{1000 \text{ mL soln}}{15.9 \text{ mol HNO}_3} = 69.8 \text{ mL soln}
\]

Dividing the mass by the volume gives the density.

\[
d = \frac{100 \text{ g}}{69.8 \text{ mL}} = 1.43 \text{ g/mL}
\]

12.110 \(P_A = X_A P_A^\ast \)

\(P_{\text{ethanol}} = (0.62)(108 \text{ mmHg}) = 67.0 \text{ mmHg} \)

\(P_{\text{1-propanol}} = (0.38)(40.0 \text{ mmHg}) = 15.2 \text{ mmHg} \)

In the vapor phase:

\[
X_{\text{ethanol}} \frac{67.0}{67.0 + 15.2} = 0.815
\]

12.111 NH₃ can form hydrogen bonds with water; NCl₃ cannot. (Like dissolves like.)

12.112 In solution, the Al(H₂O)₆³⁺ ions neutralize the charge on the hydrophobic colloidal soil particles, leading to their precipitation from water.

12.113 We can calculate the molality of the solution from the freezing point depression.

\[
\Delta T_f = K_f m
\]

\[
0.203 = 1.86 m
\]

\[
m = \frac{0.203}{1.86} = 0.109 m
\]
The molality of the original solution was 0.106 m. Some of the solution has ionized to H^+ and CH_3COO^-.

$$\text{CH}_3\text{COOH} \rightarrow \text{CH}_3\text{COO}^- + \text{H}^+$$

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Change</th>
<th>Equil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.106</td>
<td>$-x$</td>
<td>0.106 $-x$</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>$+x$</td>
<td>x</td>
</tr>
</tbody>
</table>

At equilibrium, the total concentration of species in solution is 0.109 m.

$$(0.106 - x) + 2x = 0.109$$

$$x = 0.003$$

The percentage of acid that has undergone ionization is:

$$\frac{0.003}{0.106} \times 100\% = 3\%$$

12.115 Egg yolk contains lecithins which solubilize oil in water (See Figure 12.20 of the text). The nonpolar oil becomes soluble in water because the nonpolar tails of lecithin dissolve in the oil, and the polar heads of the lecithin molecules dissolve in polar water (like dissolves like).

12.116 First, we can calculate the molality of the solution from the freezing point depression.

$$\Delta T_f = (5.12)m$$

$$(5.5 - 3.5) = (5.12)m$$

$$m = 0.39$$

Next, from the definition of molality, we can calculate the moles of solute.

$$m = \frac{\text{mol solute}}{\text{kg solvent}}$$

$$0.39 \frac{\text{mol}}{80 \times 10^{-3} \text{kg}}$$

$$\text{mol solute} = 0.031 \text{ mol}$$

The molar mass (M) of the solute is:

$$\frac{3.8 \text{ g}}{0.031 \text{ mol}} = 1.2 \times 10^2 \text{ g/mol}$$

The molar mass of CH_3COOH is 60.05 g/mol. Since the molar mass of the solute calculated from the freezing point depression is twice this value, the structure of the solute most likely is a dimer that is held together by hydrogen bonds.

12.117 $192 \mu\text{g} = 192 \times 10^{-6} \text{ g}$ or $1.92 \times 10^{-4} \text{ g}$

$$\text{mass of lead/L} = \frac{1.92 \times 10^{-4} \text{ g}}{2.6 \text{ L}} = 7.4 \times 10^{-5} \text{ g/L}$$
Safety limit: 0.050 ppm implies a mass of 0.050 g Pb per 1×10^6 g of water. 1 liter of water has a mass of 1000 g.

$$\text{mass of lead} = \frac{0.050 \text{ g Pb}}{1 \times 10^6 \text{ g H}_2\text{O}} \times 1000 \text{ g H}_2\text{O} = 5.0 \times 10^{-5} \text{ g/L}$$

The concentration of lead calculated above ($7.4 \times 10^{-5} \text{ g/L}$) exceeds the safety limit of $5.0 \times 10^{-5} \text{ g/L}$. Don’t drink the water!

12.118 (a) $\Delta T_f = K_f m$

$$2 = (1.86)(m)$$

$$\text{molality} = 1.1 \text{ m}$$

This concentration is too high and is not a reasonable physiological concentration.

(b) Although the protein is present in low concentrations, it can prevent the formation of ice crystals.

12.119 If the can is tapped with a metal object, the vibration releases the bubbles and they move to the top of the can where they join up to form bigger bubbles or mix with the gas at the top of the can. When the can is opened, the gas escapes without dragging the liquid out of the can with it. If the can is not tapped, the bubbles expand when the pressure is released and push the liquid out ahead of them.

12.120 As the water freezes, dissolved minerals in the water precipitate from solution. The minerals refract light and create an opaque appearance.

12.121 At equilibrium, the vapor pressure of benzene over each beaker must be the same. Assuming ideal solutions, this means that the mole fraction of benzene in each beaker must be identical at equilibrium. Consequently, the mole fraction of solute is also the same in each beaker, even though the solutes are different in the two solutions. Assuming the solute to be non-volatile, equilibrium is reached by the transfer of benzene, via the vapor phase, from beaker A to beaker B.

The mole fraction of naphthalene in beaker A at equilibrium can be determined from the data given. The number of moles of naphthalene is given, and the moles of benzene can be calculated using its molar mass and knowing that 100 g – 7.0 g = 93.0 g of benzene remain in the beaker.

$$X_{\text{C}_{10}H_8} = \frac{0.15 \text{ mol}}{0.15 \text{ mol} + \left(\frac{93.0 \text{ g benzene}}{1 \text{ mol benzene}} \times \frac{1 \text{ mol benzene}}{78.11 \text{ g benzene}}\right)} = 0.112$$

Now, let the number of moles of unknown compound be n. Assuming all the benzene lost from beaker A is transferred to beaker B, there are 100 g + 7.0 g = 107 g of benzene in the beaker. Also, recall that the mole fraction of solute in beaker B is equal to that in beaker A at equilibrium (0.112). The mole fraction of the unknown compound is:

$$X_{\text{unknown}} = \frac{n}{n + \left(\frac{107 \text{ g benzene}}{78.11 \text{ g benzene}} \times \frac{1 \text{ mol benzene}}{78.11 \text{ g benzene}}\right)}$$

$$0.112 = \frac{n}{n + 1.370}$$

$$n = 0.173 \text{ mol}$$
There are 31 grams of the unknown compound dissolved in benzene. The molar mass of the unknown is:

\[
\frac{31 \text{ g}}{0.173 \text{ mol}} = 1.8 \times 10^2 \text{ g/mol}
\]

Temperature is assumed constant and ideal behavior is also assumed.

12.122 To solve for the molality of the solution, we need the moles of solute (urea) and the kilograms of solvent (water). If we assume that we have 1 mole of water, we know the mass of water. Using the change in vapor pressure, we can solve for the mole fraction of urea and then the moles of urea.

Using Equation (12.5) of the text, we solve for the mole fraction of urea.

\[
\Delta P = X_2 P_1^o = X_{\text{urea}} P_{\text{water}}^o
\]

\[
X_{\text{urea}} = \frac{\Delta P}{P_{\text{water}}^o} = \frac{0.78 \text{ mmHg}}{23.76 \text{ mmHg}} = 0.033
\]

Assuming that we have 1 mole of water, we can now solve for moles of urea.

\[
0.033 = \frac{n_{\text{urea}}}{n_{\text{urea}} + 1}
\]

\[
0.033 n_{\text{urea}} + 0.033 = n_{\text{urea}}
\]

\[
0.033 = 0.967 n_{\text{urea}}
\]

\[
n_{\text{urea}} = 0.034 \text{ mol}
\]

1 mole of water has a mass of 18.02 g or 0.01802 kg. We now know the moles of solute (urea) and the kilograms of solvent (water), so we can solve for the molality of the solution.

\[
m = \frac{\text{mol solute}}{\text{kg solvent}} = \frac{0.034 \text{ mol}}{0.01802 \text{ kg}} = 1.9 \text{ m}
\]

12.123 (a) Acetone is a polar molecule and carbon disulfide is a nonpolar molecule. The intermolecular attractions between acetone and CS\(_2\) will be weaker than those between acetone molecules and those between CS\(_2\) molecules. Because of the weak attractions between acetone and CS\(_2\), there is a greater tendency for these molecules to leave the solution compared to an ideal solution. Consequently, the vapor pressure of the solution is greater than the sum of the vapor pressures as predicted by Raoult's law for the same concentration.

(b) Let acetone be component A of the solution and carbon disulfide component B. For an ideal solution, \(P_A = X_A P_A^o\), \(P_B = X_B P_B^o\), and \(P_T = P_A + P_B\).
\[
P_{\text{acetone}} = X_A P_A^0 = (0.60)(349 \text{ mmHg}) = 209.4 \text{ mmHg}
\]
\[
P_{\text{CS}_2} = X_B P_B^0 = (0.40)(501 \text{ mmHg}) = 200.4 \text{ mmHg}
\]
\[
P_T = (209.4 + 200.4) \text{ mmHg} = 410 \text{ mmHg}
\]

Note that the ideal vapor pressure is less than the actual vapor pressure of 615 mmHg.

(c) The behavior of the solution described in part (a) gives rise to a positive deviation from Raoult’s law [See Figure 12.8(a) of the text]. In this case, the heat of solution is positive (that is, mixing is an endothermic process).

12.124 (a) The solution is prepared by mixing equal masses of A and B. Let’s assume that we have 100 grams of each component. We can convert to moles of each substance and then solve for the mole fraction of each component.

Since the molar mass of A is 100 g/mol, we have 1.00 mole of A. The moles of B are:
\[
100 \text{ g} B \times \frac{1 \text{ mol B}}{110 \text{ g} B} = 0.909 \text{ mol B}
\]

The mole fraction of A is:
\[
X_A = \frac{n_A}{n_A + n_B} = \frac{1}{1 + 0.909} = 0.524
\]

Since this is a two component solution, the mole fraction of B is: \(X_B = 1 - X_A = 0.476\)

(b) We can use Equation (12.4) of the text and the mole fractions calculated in part (a) to calculate the partial pressures of A and B over the solution.

\[
P_A = X_A P_A^0 = (0.524)(95 \text{ mmHg}) = 50 \text{ mmHg}
\]
\[
P_B = X_B P_B^0 = (0.476)(42 \text{ mmHg}) = 20 \text{ mmHg}
\]

(c) Recall that pressure of a gas is directly proportional to moles of gas (\(P \propto n\)). The ratio of the partial pressures calculated in part (b) is 50 : 20, and therefore the ratio of moles will also be 50 : 20. Let’s assume that we have 50 moles of A and 20 moles of B. We can solve for the mole fraction of each component and then solve for the vapor pressures using Equation (12.4) of the text.

The mole fraction of A is:
\[
X_A = \frac{n_A}{n_A + n_B} = \frac{50}{50 + 20} = 0.71
\]

Since this is a two component solution, the mole fraction of B is: \(X_B = 1 - X_A = 0.29\)

The vapor pressures of each component above the solution are:
\[
P_A = X_A P_A^0 = (0.71)(95 \text{ mmHg}) = 67 \text{ mmHg}
\]
\[
P_B = X_B P_B^0 = (0.29)(42 \text{ mmHg}) = 12 \text{ mmHg}
\]
12.125 The desired process is for (fresh) water to move from a more concentrated solution (seawater) to pure solvent. This is an example of reverse osmosis, and external pressure must be provided to overcome the osmotic pressure of the seawater. The source of the pressure here is the water pressure, which increases with increasing depth. The osmotic pressure of the seawater is:

\[\pi = MRT \]
\[\pi = (0.70 \text{ M})(0.0821 \text{ L atm/mol K})(293 \text{ K}) \]
\[\pi = 16.8 \text{ atm} \]

The water pressure at the membrane depends on the height of the sea above it, i.e., the depth. \(P = \rho gh \), and fresh water will begin to pass through the membrane when \(P = \pi \). Substituting \(\pi = P \) into the equation gives:

\[\pi = \rho gh \]

and

\[h = \frac{\pi}{\rho g} \]

Before substituting into the equation to solve for \(h \), we need to convert atm to pascals, and the density to units of kg/m\(^3\). These conversions will give a height in units of meters.

\[16.8 \text{ atm} \times \frac{1.01325 \times 10^5 \text{ Pa}}{1 \text{ atm}} = 1.70 \times 10^6 \text{ Pa} \]

1 Pa = 1 N/m\(^2\) and 1 N = 1 kg·m/s\(^2\). Therefore, we can write \(1.70 \times 10^6 \text{ Pa} \) as \(1.70 \times 10^6 \text{ kg/m}^3 \cdot \text{m}^2 \). Therefore, we can write \(1.70 \times 10^6 \text{ kg/m}^3 \cdot \text{m}^2 \) as \(1.70 \times 10^6 \text{ kg/m}^3 \)

\[h = \frac{\pi}{\rho g} = \frac{1.70 \times 10^6 \text{ kg/m}^3}{9.81 \text{ m/s}^2} = 168 \text{ m} \]

12.126 To calculate the mole fraction of urea in the solutions, we need the moles of urea and the moles of water. The number of moles of urea in each beaker is:

\[\text{moles urea (1)} = \frac{0.10 \text{ mol}}{1 \text{ L}} \times 0.050 \text{ L} = 0.0050 \text{ mol} \]

\[\text{moles urea (2)} = \frac{0.20 \text{ mol}}{1 \text{ L}} \times 0.050 \text{ L} = 0.010 \text{ mol} \]

The number of moles of water in each beaker initially is:

\[\text{moles water} = 50 \text{ mL} \times \frac{1 \text{ g}}{1 \text{ mL}} \times \frac{1 \text{ mol}}{18.02 \text{ g}} = 2.8 \text{ mol} \]

The mole fraction of urea in each beaker initially is:

\[X_1 = \frac{0.0050 \text{ mol}}{0.0050 \text{ mol + 2.8 mol}} = 1.8 \times 10^{-3} \]

\[X_2 = \frac{0.010 \text{ mol}}{0.010 \text{ mol + 2.8 mol}} = 3.6 \times 10^{-3} \]
Equilibrium is attained by the transfer of water (via water vapor) from the less concentrated solution to the more concentrated one until the mole fractions of urea are equal. At this point, the mole fractions of water in each beaker are also equal, and Raoult’s law implies that the vapor pressures of the water over each beaker are the same. Thus, there is no more net transfer of solvent between beakers. Let \(y \) be the number of moles of water transferred to reach equilibrium.

\[
X_1 \text{ (equil.)} = X_2 \text{ (equil.)}
\]

\[
\frac{0.0050 \text{ mol}}{0.0050 \text{ mol} + 2.8 \text{ mol} - y} = \frac{0.010 \text{ mol}}{0.010 \text{ mol} + 2.8 \text{ mol} + y}
\]

\[
0.014 + 0.0050y = 0.028 - 0.010y
\]

\[y = 0.93\]

The mole fraction of urea at equilibrium is:

\[
\frac{0.010 \text{ mol}}{0.010 \text{ mol} + 2.8 \text{ mol} + 0.93 \text{ mol}} = 2.7 \times 10^{-3}
\]

This solution to the problem assumes that the volume of water left in the bell jar as vapor is negligible compared to the volumes of the solutions. It is interesting to note that at equilibrium, 16.8 mL of water has been transferred from one beaker to the other.

12.127 The total vapor pressure depends on the vapor pressures of A and B in the mixture, which in turn depends on the vapor pressures of pure A and B. With the total vapor pressure of the two mixtures known, a pair of simultaneous equations can be written in terms of the vapor pressures of pure A and B. We carry 2 extra significant figures throughout this calculation to avoid rounding errors.

For the solution containing 1.2 moles of A and 2.3 moles of B,

\[
X_A = \frac{1.2 \text{ mol}}{1.2 \text{ mol} + 2.3 \text{ mol}} = 0.3429
\]

\[
X_B = 1 - 0.3429 = 0.6571
\]

\[
P_{\text{total}} = P_A + P_B = X_A P_A^o + X_B P_B^o
\]

Substituting in \(P_{\text{total}} \) and the mole fractions calculated gives:

\[
331 \text{ mmHg} = 0.3429 P_A^o + 0.6571 P_B^o
\]

Solving for \(P_A^o \):

\[
P_A^o = \frac{331 \text{ mmHg} - 0.6571 P_B^o}{0.3429} = 965.3 \text{ mmHg} - 1.916 P_B^o
\] (1)

Now, consider the solution with the additional mole of B.

\[
X_A = \frac{1.2 \text{ mol}}{1.2 \text{ mol} + 3.3 \text{ mol}} = 0.2667
\]

\[
X_B = 1 - 0.2667 = 0.7333
\]

\[
P_{\text{total}} = P_A + P_B = X_A P_A^o + X_B P_B^o
\]
Substituting in P_{total} and the mole fractions calculated gives:

$$347 \text{ mmHg} = 0.2667P_A^c + 0.7333P_B^c$$ \hspace{1cm} (2)

Substituting Equation (1) into Equation (2) gives:

$$347 \text{ mmHg} = 0.2667(965.3 \text{ mmHg} - 1.916P_B^c) + 0.7333P_B^c$$

$$0.2223P_B^c = 89.55 \text{ mmHg}$$

$$P_B^c = 402.8 \text{ mmHg} = 4.0 \times 10^2 \text{ mmHg}$$

Substitute the value of P_B^c into Equation (1) to solve for P_A^c.

$$P_A^c = 965.3 \text{ mmHg} - 1.916(402.8 \text{ mmHg}) = 193.5 \text{ mmHg} = 1.9 \times 10^2 \text{ mmHg}$$

12.128 Starting with $n = kP$ and substituting into the ideal gas equation ($PV = nRT$), we find:

$$PV = (kP)RT$$

$$V = kRT$$

This equation shows that the volume of a gas that dissolves in a given amount of solvent is dependent on the temperature, not the pressure of the gas.

12.129 (a) kg solvent = \left[\text{mass of soln(g)} - \text{mass of solute(g)}\right] \times \frac{1 \text{ kg}}{1000 \text{ g}}

or

$$\text{kg solvent} = \frac{\text{mass of soln(g)} - \text{mass of solute(g)}}{1000}$$ \hspace{1cm} (1)

If we assume 1 L of solution, then we can calculate the mass of solution from its density and volume (1000 mL), and the mass of solute from the molarity and its molar mass.

$$\text{mass of soln} = d \left(\frac{g}{\text{mL}} \right) \times 1000 \text{ mL}$$

$$\text{mass of solute} = M \left(\frac{\text{mol}}{\text{L}} \right) \times 1\text{L} \times M \left(\frac{g}{\text{mol}} \right)$$

Substituting these expressions into Equation (1) above gives:

$$\text{kg solvent} = \frac{(d)(1000) - MM}{1000}$$

or

$$\text{kg solvent} = d - \frac{MM}{1000}$$ \hspace{1cm} (2)

From the definition of molality (m), we know that

$$\text{kg solvent} = \frac{\text{mol solute}}{M}$$

Assuming 1 L of solution, we also know that mol solute (n) = Molarity (M), so Equation (3) becomes:

$$\text{kg solvent} = \frac{M}{m}$$
Substituting back into Equation (2) gives:

\[\frac{M}{m} = d - \frac{M \cdot M}{1000} \]

Taking the inverse of both sides of the equation gives:

\[\frac{m}{M} = \frac{1}{d - \frac{M \cdot M}{1000}} \]

or

\[m = \frac{M}{d - \frac{M \cdot M}{1000}} \]

(b) The density of a dilute aqueous solution is approximately 1 g/mL, because the density of water is approximately 1 g/mL. In dilute solutions, \(d \gg \frac{M \cdot M}{1000} \). Consider a 0.010 \(M \) NaCl solution.

\[\left(\frac{0.010 \text{ mol/L}}{1000} \right) (58.44 \text{ g/mol}) = 5.8 \times 10^{-4} \text{ g/L} \ll 1 \]

With \(d \gg \frac{M \cdot M}{1000} \), the derived equation reduces to:

\[m \approx \frac{M}{d} \]

Because \(d \approx 1 \text{ g/mL} \), \(m \approx M \).

12.130 To calculate the freezing point of the solution, we need the solution molality and the freezing-point depression constant for water (see Table 12.2 of the text). We can first calculate the molarity of the solution using Equation (12.8) of the text: \(\pi = MRT \). The solution molality can then be determined from the molarity.

\[M = \frac{\pi}{RT} = \frac{10.50 \text{ atm}}{(0.0821 \text{ L atm/mol K})(298 \text{ K})} = 0.429 \text{ M} \]

Let’s assume that we have 1 L (1000 mL) of solution. The mass of 1000 mL of solution is:

\[\frac{1.16 \text{ g}}{1 \text{ mL}} \times 1000 \text{ mL} = 1160 \text{ g soln} \]

The mass of the solvent (H\(_2\)O) is:

\[\text{mass H}_2\text{O} = \text{mass soln} - \text{mass solute} \]

\[\text{mass H}_2\text{O} = 1160 \text{ g} - \left(0.429 \text{ mol glucose} \times \frac{180.2 \text{ g glucose}}{1 \text{ mol glucose}} \right) = 1083 \text{ g} = 1.083 \text{ kg} \]

The molality of the solution is:

\[\text{molality} = \frac{\text{mol solute}}{\text{kg solvent}} = \frac{0.429 \text{ mol}}{1.083 \text{ kg}} = 0.396 \text{ m} \]
CHAPTER 12: PHYSICAL PROPERTIES OF SOLUTIONS

The freezing point depression is:

$$\Delta T_f = K_f m = (1.86^\circ C/m)(0.396 m) = 0.737^\circ C$$

The solution will freeze at $0^\circ C - 0.737^\circ C = -0.737^\circ C$

12.131 From the mass of CO$_2$ and the volume of the soft drink, the concentration of CO$_2$ in moles/liter can be calculated. The pressure of CO$_2$ can then be calculated using Henry’s law.

The mass of CO$_2$ is

$$853.5 \text{ g} - 851.3 \text{ g} = 2.2 \text{ g CO}_2$$

The concentration of CO$_2$ in the soft drink bottle is

$$M = \frac{\text{mol CO}_2}{\text{L of soln}} = \frac{2.2 \text{ g CO}_2 \times 1 \text{ mol CO}_2}{44.01 \text{ g CO}_2} = \frac{0.4524 \text{ L}}{0.11 \text{ M}}$$

We use Henry’s law to calculate the pressure of CO$_2$ in the soft drink bottle.

$$c = kP$$

$$0.11 \text{ mol/L} \times (3.4 \times 10^2 \text{ mol/L} \cdot \text{atm})P$$

$$P_{CO_2} = 3.2 \text{ atm}$$

The calculated pressure is only an estimate because the concentration (c) of CO$_2$ determined in the experiment is an estimate. Some CO$_2$ gas remains dissolved in the soft drink after opening the bottle. It will take some time for the CO$_2$ remaining in solution to equilibrate with the CO$_2$ gas in the atmosphere. The mass of CO$_2$ determined by the student is only an estimate and hence the calculated pressure is also an estimate. Also, vaporization of the soft drink decreases its mass.

12.132 Valinomycin contains both polar and nonpolar groups. The polar groups bind the K^+ ions and the nonpolar $-CH_3$ groups allow the valinomycin molecule to dissolve in the nonpolar lipid barrier of the cell. Once dissolved in the lipid barrier, the K^+ ions transport across the membrane into the cell to offset the ionic balance.

Answers to Review of Concepts

Section 12.3 (p. 521)
Molarity (it decreases because the volume of the solution increases on heating).

Section 12.5 (p. 526)
HCl because it is much more soluble in water.

Section 12.6 (p. 533)
The solution boils at about $83^\circ C$. From Equation (12.6) and Table 12.2 of the text, we find that the concentration is 1.1 M.

Section 12.6 (p. 536)
When the seawater is placed in an apparatus like that shown in Figure 12.11 of the text, it exerts a pressure of 25 atm.

Section 12.7 (p. 540)
(a) Na$_2$SO$_4$. (b) MgSO$_4$. (c) LiBr.

Section 12.7 (p. 540)
Assume $i = 2$ for NaCl. The concentration of the saline solution should be about 0.15 M.