Chapter 13: The Spinal Cord, Spinal Nerves, and Spinal Reflexes

Gross Anatomy of the Spinal Cord
The Distal End

- **Conus medullaris:**
 - thin, conical spinal cord below lumbar enlargement

- **Filum terminale:**
 - thin thread of fibrous tissue at end of conus medullaris
 - attaches to coccygeal ligament

- **Cauda equina:**
 - nerve roots extending below conus medullaris

Spinal Meninges
The 3 Meningeal Layers

- Dura mater:
 - outer layer of spinal cord
- Arachnoid mater:
 - middle meningeal layer
- Pia mater:
 - inner meningeal layer

Cerebrospinal Fluid (CSF)

- Is found in subarachnoid space
- Carries dissolved gases, nutrients, and wastes
- Spinal tap:
 - withdraws CSF
The Spinal Cord

Sectional Anatomy of the Spinal Cord
The Gray Horns

- Posterior gray horns:
 - contain somatic and visceral sensory nuclei

- Anterior gray horns:
 - contain somatic motor nuclei

- Lateral gray horns:
 - are in thoracic and lumbar segments
 - contain visceral motor nuclei

Organization of White Matter

- 3 columns (funiculi) on each side of spinal cord:
 - posterior white columns
 - anterior white columns
 - lateral white columns
Tracts

- **Tracts or fasciculi:**
 - in white columns
 - bundles of axons
 - relay same information in same direction

- **Ascending tracts:**
 - carry information to brain

- **Descending tracts:**
 - carry motor commands to spinal cord

Sectional Anatomy of the Spinal Cord
Spinal Nerves

Organization of Spinal Nerves

- Every spinal cord segment:
 - is connected to a pair of **spinal nerves**

- Every spinal nerve:
 - is surrounded by 3 connective tissue layers
 - that support structures and contain blood vessels
3 Connective Tissue Layers

- **Epineurium**:
 - outer layer
 - dense network of collagen fibers

- **Perineurium**:
 - middle layer
 - divides nerve into fascicles (axon bundles)

- **Endoneurium**:
 - inner layer
 - surrounds individual axons

Dorsal and Ventral Rami

- **Dorsal ramus**:
 - contains somatic and visceral motor fibers
 - innervates the back

- **Ventral ramus**:
 - larger branch
 - innervates ventrolateral structures and limbs
Peripheral Distribution of Spinal Nerves

- Sensory fibers

![Diagram of Peripheral Distribution of Spinal Nerves]

Nerve Plexuses

![Diagram of Nerve Plexuses]

Figure 13–7b

Peripheral Distribution of Spinal Nerves

Sensory fibers

Figure 13–9

Nerve Plexuses
Nerve Plexuses

- Complex, interwoven networks of nerve fibers
- Formed from blended fibers of ventral rami of adjacent spinal nerves
- Control skeletal muscles of the neck and limbs

The 4 Major Plexuses of Ventral Rami

1. Cervical plexus
2. Brachial plexus
3. Lumbar plexus
4. Sacral plexus
The Cervical Plexus

- Includes ventral rami of spinal nerves C₁–C₅
- Innervates neck, thoracic cavity, diaphragmatic muscles
- Major nerve:
 - phrenic nerve (controls diaphragm)
The Brachial Plexus

- Includes ventral rami of spinal nerves C₅–T₁
- Innervates pectoral girdle and upper limbs

Major Nerves of Brachial Plexus

- Musculocutaneous nerve (lateral cord)
- Median nerve (lateral and medial cords)
- Ulnar nerve (medial cord)
- Axillary nerve (posterior cord)
- Radial nerve (posterior cord)
The Lumbar and Sacral Plexuses

- Innervate pelvic girdle and lower limbs
The Lumbar Plexus

- Includes ventral rami of spinal nerves $T_{12}-L_4$
- Major nerves:
 - genitofemoral nerve
 - lateral femoral cutaneous nerve
 - femoral nerve

The Sacral Plexus

- Includes ventral rami of spinal nerves L_4-S_4
- Major nerves:
 - pudendal nerve
 - sciatic nerve
- Branches of sciatic nerve:
 - fibular nerve
 - tibial nerve
Reflexes

- Automatic responses coordinated within spinal cord
- Through interconnected sensory, motor, and interneurons
- Produce simple and complex reflexes

Neural Reflexes

- Rapid, automatic responses to specific stimuli
- Basic building blocks of neural function
- 1 neural reflex produces 1 motor response
The Reflex Arc

- The wiring of a single reflex
- Beginning at receptor
- Ending at peripheral effector
- Generally opposes original stimulus (negative feedback)

5 Steps in a Neural Reflex

STEP 1: Arrival of stimulus and activation of receptor
STEP 2: Activation of a sensory neuron
STEP 3: Information processing in CNS
STEP 4: Activation of a motor neuron
STEP 5: Response by effector

KEY
- Sensory neuron (stimulated)
- Excitatory interneuron
- Motor neuron (stimulated)
Development

- How reflex was developed:
 - innate reflexes:
 - basic neural reflexes
 - formed before birth
 - acquired reflexes:
 - rapid, automatic
 - learned motor patterns

Response

- Nature of resulting motor response:
 - somatic reflexes:
 - involuntary control of nervous system
 - superficial reflexes of skin, mucous membranes
 - stretch reflexes (deep tendon reflexes) e.g., patellar reflex
 - visceral reflexes (autonomic reflexes):
 - control systems other than muscular system
Complexity

- Complexity of neural circuit:
 - monosynaptic reflex:
 - sensory neuron synapses directly onto motor neuron
 - polysynaptic reflex:
 - at least 1 interneuron between sensory neuron and motor neuron

Monosynaptic Reflexes

- A stretch reflex
Monosynaptic Reflexes

- Have least delay between sensory input and motor output:
 - *e.g.*, stretch reflex (such as patellar reflex)
- Completed in 20–40 msec

A Muscle Spindle
Muscle Spindles

- The receptors in stretch reflexes
- Bundles of small, specialized *intrafusal muscle fibers*:
 - innervated by sensory and motor neurons
- Surrounded by *extrafusal muscle fibers*:
 - which maintain tone and contract muscle

The Tendon Reflex

- Prevents skeletal muscles from:
 - developing too much tension
 - tearing or breaking tendons
- Sensory receptors unlike muscle spindles or proprioceptors
A Flexor Reflex

Withdrawal Reflexes

- Move body part away from stimulus (pain or pressure):
 - e.g., flexor reflex:
 - pulls hand away from hot stove

- Strength and extent of response:
 - depends on intensity and location of stimulus
Reciprocal Inhibition

- For flexor reflex to work:
 - the stretch reflex of antagonistic (extensor) muscle must be inhibited (reciprocal inhibition) by interneurons in spinal cord

Reflex Arcs

- Ipsilateral reflex arcs:
 - occur on same side of body as stimulus
 - stretch, tendon, and withdrawal reflexes
- Crossed extensor reflexes:
 - involves a contralateral reflex arc
 - occurs on side opposite stimulus
The Crossed Extensor Reflex

Crossed Extensor Reflexes

- Occur simultaneously, coordinated with flexor reflex
- *e.g.*, flexor reflex causes leg to pull up:
 - crossed extensor reflex straightens other leg
 - to receive body weight
The Babinski Reflexes

- Normal in infants
- May indicate CNS damage in adults