Nursing Care of Client Experiencing Respiratory Dysfunction and Chronic Airflow Limitations

Disorders of Chronic Airflow Limitation
- Physiologic impedance of conduction of air to structures of gas exchange
 - Asthma
 - COPD
 - Chronic bronchitis
 - Pulmonary emphysema

Nursing Care of Clients Experiencing Asthma

Incidence and Etiology of Asthma
- 4,487 deaths from Asthma (2000)
- Approximately 17.7 million adults (18 and over) reported having asthma (1998)
- females (10.5 million) > males (7.1 million)

Pathophysiology of Asthma
- Conducting airways exposed to an irritant (trigger) initiates two responses
 - inflammation
 - bronchoconstriction

Alterations in Conducting Airways during Asthmatic events

Airway changes in Chronic Asthma
- Can progress form an intermittent, episodic disorder.
- Seen in clients with long-standing, severe or poorly controlled asthma.

Symptomotology
Condition marked by recurrent attacks of paroxysmal dyspnea, with wheezing due to spasmodic contraction of the bronchi

Triggers of Asthmatic Attacks
- Exposure to allergens
 - atopic asthma
- occupational exposure to irritants
- cigarette smoking
- respiratory infection
- medications
 - use of ASA, NSAIDS and propranolol may trigger increased inflammatory response in other pathways, causing asthma-like responses
- exercise induced
- exposure to cold weather
- esophageal reflux
Clinical Manifestations of an Acute Attack on a Continuum of Mild to Severe

• Audible wheeze and tachypnea, hyperpnea
tachycardia
 • A quiet-sounding chest is an alarm that the patient may have a severe respiratory problem that can quickly become life threatening. (Merck, 2000)
• Increased coughing (possible thick, tenacious sputum)
• Use of accessory muscles
 • Suprasternal retractions, nasal flare
• Barrel chest may be seen …..AP diameter ∆
• Respiratory cycle longer requiring greater effort
 • Prolonged exp phase …..I<E…attempt to exhale trapped air
• Cyanosis, dyspnea
• Restlessness, anxiety ⇒ Decreased LOC (ominous sign)

Asthma: The Step System

I: Mild or Intermittent
Symptoms occur < ~2x week, symptom free b/w episodes. Symptoms short lasting only few hours PFT normal b/w episodes

II: Mild Persistent
Symptoms occur >2x week, not daily. Present @ night 2x mos. Activity affected

III: Moderate Persistent
Symptoms occur daily. Persist for days. Symptoms present @ night at least once/week

IV: Severe Persistent
Symptoms continuously present. Limited physical activity. Episodes frequent.

Lab Tests/Diagnostics of Airflow Limitations

• Peak expiratory flow rate (PEFR)
 • percentile reduction from personal best
• Pulmonary function tests (PFTs)
 • Forced expiratory volume (FEV₁) < 80% of predicted value
 • ratio FEV₁ to Forced Vital Capacity (FVC) is reduced
• Chest XRAY shows hyperinflation
 • R/O respiratory infection

Lab Tests/Diagnostics of Allergens

• Allergy skin testing in suspected atopy
 • ambulatory care setting
• RAST
 • blood test to measure amounts of IgE
• Differential in CBC
 • increased percentage of eosinophils from baseline (0%-7%)

Lab tests/Diagnostics of Infections

• Differential in CBC
 • increased percentage of neutrophils from baseline 18%-77% (called a shift to the left)
- Eosinophilia
 - Response to allergens
 - Elevated WBC count
 - May not be increased with a client on corticosteroid therapy
- Chest X-ray shows infiltrate
- Sputum C & S

15 Lab/Diagnostics: Gas Exchange
- Pulse Oximetry
 - Less than 91% requires arterial blood gas measures
 - ABGs are performed for PO2 < 95% in clients with heart disease
- Arterial blood gases (ABGs)
 - Generally performed in clients who don’t respond to medical therapy and present with evidence of O2 desaturation
 - PaO2 < 60 mm Hg indicates hypoxemia with a rising PaCO2 associated with a decline in pH indicates need for mechanical ventilation due to respiratory failure
 - Frequently seen in status asthmaticus

16 PULSE OXIMETRY IS A PIECE OF EQUIPMENT. TREAT THE PATIENT, NOT THE MACHINE.

17 How does the clinician treat the asthma client according to peak flow measures?

18 Medical Management of Asthma
- Education
- Drug therapy
 1. Bronchodilators
 2. Anti-inflammatory agents
 3. Corticosteroids
 5. Mast cell stabilizers
 6. Leukotriene antagonists
- Exercise/activity
 - Aerobic exercise is encouraged to improve overall pulmonary function
 - Instruct patient to use inhaler prior to exercise
- Prevention and early identification of complications airway remodeling

19 Expected Outcome in the treatment of Asthma
- Decrease in the inflammation and bronchospasm that are associated with asthma
- Eliminate/control symptoms
- Maintain normal respiratory function
- Minimize complications associated with the disease and its therapy
21 Where medications work

Mast cell stabilizers
cromolyn

Anti-inflammatory agents
corticosteroids
leukotriene antagonists
inhaled anti-inflammatories

Bronchodilators
beta2 agonists
methylxanthines
anticholinergics

22 Collaborative Care for Asthma

• Education
 – use and maintenance of peak flow records
 – avoidance of triggers
 • May need to modify their lifestyle, home & work environment to control their disease
 – correct use of medication
 – smoking cessation
 • Counsel, refer, and instruct on behavior modification - including their presence around second-hand smoke.
 – exercise/activity instruction
 » Exercise induced exacerbation

• Monitoring effectiveness of medication therapy

• Prevention of respiratory infection
 – Pneumovax, flu vaccine

• Identification of complications of progressive disease

23 Drug therapy: Bronchodilators

• Beta2 agonists relax bronchial smooth muscle & are used as first line therapy due to the rapid effect...
 • Inhaled, PO, SC
 • Inhalers have particular rapid effect
 • Short acting inhaled used for rescue
 • Proventil, albuterol
 • Long acting inhaled used for maintenance
 • Serevent
 • PO preparations associated with greater systemic side effect
 • Terbutaline, proventil, repetabs
 • SC used in emergency management
 • Brethine, epinephrine

24 Nursing Considerations for Beta2 Agonists

• Monitor for s/s of toxicity especially with systemic preparations
 – palpitations, chest pain, hypertension

• Client teaching regarding use of short acting preparations as rescue medication

25 Nursing Considerations for Methylxanthines

• Used when other drug therapy is ineffective
 • PO, IV preparations
 • theodur, aminophylline
 • requires loading dose on initiation
 • monitor therapeutic blood levels (5-15 mcg/ml)
 • serum level > 20 mcg/ml is toxic
 • Therefore - Narrow therapeutic margin
 • side effects include:
 • restlessness, GI upset, tachycardia
 • caffeine potentiates side effects
 • Therefore - Poorly tolerated
• methylxanthines
• anticholinergics

26 Nursing Considerations for Anticholinergics
• Inhaled preparation
 – atrovent (ipratropium)
• used infrequently as an *adjunct to rescue medication*
 – more often included in daily maintenance
• side effects:
 – dry mouth, headache, n/v, palpitations

27 Nursing Consideration with Anti-inflammatories
Corticosteroids / Glucocorticoids
• administered as PO, IV, Inhaled
 – Prednisone, Solumedrol, Beclomethasone
 – Side effects enhanced in PO and IV route
 – monitor for s/s of infection as it may be masked by medication
 • inhaled steroids may cause candidiasis
 – monitor for GI ulceration, impaired wound healing
 – monitor for hyperglycemia
 – monitor for weight gain, fluid retention

 Goal - prevent permanent structural damage to lungs.

28 Nursing Consideration with Anti-inflammatories
• Leukotriene inhibitors
 – PO preparation
 • Accolate (Zafirlukast) & Singulair (Montelukast)
 – usually added to clients unresponsive to inhaled steroids
 – Zafirlukast side effects:
 • increased concentration if taken with Aspirin
 • impaired absorption with food
 • Tilade (Nedocromil)
 – inhaled therapy for maintenance only

29 Nursing Considerations with Mast Cell Stabilizers
• Cromolyn Sodium (Intal)
 – inhaled preparations
 – preventative therapy in allergic/environmental triggers
 • *take several weeks before allergy season*
 – requires consistent, regular use to be effective
 • *not used as a rescue drug*
 – causes throat irritation and coughing if powder is swallowed

30 Further nursing considerations
• Administer sedatives with caution…if @ all!
• Administer supplemental O2….
 - What do we want to prevent?…hypoxemia

31 Nursing Care of Clients Experiencing Asthma
- Risk for ineffective respiratory function
 - r/t excessive secretions secondary to inflammation or allergic response
- Potential for: Hypoxemia
- Potential for: Medication therapy adverse effects; bronchodilator, anti-inflammatories
- Potential for: Respiratory acidosis
- Risk for ineffective therapeutic regimen management r/t insufficient knowledge regarding asthma management

32 Test your asthma I.Q.

33 What is the nurse’s best action?
• Client develops an audible wheeze?
• Client asks for a cough suppressant?
• Client is unable to breathe deeply when using a ventolin inhaler?
• Pulse oximetry drops from 92%-88%?
• Vital signs show HR-124 and B/P 160-100?
• Client reports a sore throat?
• Elderly client can not demonstrate use of MDI?
• Client expresses relief that they only have asthma?

34 Remember you ABC’s……..
• Patients who have inaudible breath sounds, those using accessory muscles to breathe, & those who have tachypnea/tachycardia are in danger of respiratory arrest and require immediate emergency medical intervention!!!!!!!

35 Test Time…..
1 Asthma can be caused by:
 a. air pollution
 b. food
 c. Warm moist air
 d. animal dander

2 In what population does asthma typically occur?
 a. < age 25
 b. > age 50
 c. of all ages
 d. can occur at any time in life, yet more common < age 25

36 Selected Teaching Topic:
Peak flow measurement
Understanding Peak Flow Results

- **Green Zone:**
 80 to 100 percent of usual or "normal" Peak Flow Rate signals all clear. Under reasonably good control.

- **Yellow Zone:**
 50 to 80 percent of usual or "normal" Peak Flow Rate signals caution. May require additional medication.

- **Red Zone:**
 Less than 50 percent of usual or "normal" Peak Flow Rate signals a Medical Alert. Take rescue medications and contact MD. Clients generally instructed to go to emergency room.

Using Peak flow meters in a teaching plan...

Nursing Care of Clients Experiencing Chronic Airway Limitations of COPD

Distinguishing Between Emphysema & Chronic Bronchitis

- **Emphysema**
 - destruction of alveoli and loss of elastic recoil of lung
 - overdistended alveoli called bullae
 - result in hyperinflation of lung and decreased gas exchange

- **Chronic Bronchitis**
 - inflammation of bronchioles causing mucus gland hypertrophy and hyperplasia
 - excess sputum production with chronic airflow reduction, mucus plugs block gas exchange increase infection

Incidence & Etiology

- 16 million people had COPD in 1994
- prevalence, incidence, & mortality increase with age
- cigarette smoking and/or exposure to smoke/irritants
- air pollution
- family history of α_1-antitrypsin
 (α_1-antiprotease inhibitor) deficiency

Complications of COPD

- Hypoxemia and acidosis
- Respiratory tract infections
- Right sided heart failure (Cor Pulmonale)
- Cardiac dysrhythmias

Clinical Manifestations COPD

BLUE BOATER versus PINK PUFFER

- General: thin, ↓ muscle mass, slow moving, slightly stooped, assume tripod position in exacerbation
- Respiratory
 1. Rapid, shallow, paradoxical respirations
 2. Use of accessory muscles, abnormal breathing patterns
 3. Decreased chest excursion, fremurs, hyperresonant
 4. Crackles, dyspnea
Chronic bronchitis aka Blue Bloater

Pathogenesis
- Excessive production of mucus
- Chronic cough that lasts 3 mos/year
 \(x2\) consecutive years
 - Particularly after a nights sleep
 - Thick, purulent sputum-breeding ground for m/o’s
- Result of prolonged exposure to respiratory irritants
 - Tobacco, air pollution, toxic fumes, dust
 - Resulting in chronic inflammation, swelling and thickening in bronchioles and enlarged mucus-producing glands
 - Scarring and damage to mucociliary lining of resp. tract eventually leading to destruction of small airways.

Advanced disease - right sided heart failure and chronic severe hypoxia

Emphysema aka Pink Puffer

Pathogenesis
- Enlarged distal air spaces and destruction of alveoli
 - Centrilobular - correlated with tobacco smoke
 - Panlobular - familial tendency

Clinical manifestations
- Increasing breathlessness
- Prolonged expiratory phase in resp cycle
- Chronically malnourished
- Barrel chest, pursed breathing opens distal airways

Progressive, incurable disease
- Demise secondary to: resp acidosis-coma, heart failure, massive pneumothorax

Lab/Diagnostics

- ABGs (50-50 Club)
 - Hypercarbia, hypoxemia
 - Hypercarbia seen in advanced COPD (also known as CO2 retainers)
 - May be stable
 - ABG will show full compensation
 - May be unstable:
 - Respiratory acidosis with partial compensation

Lab/Diagnostics

- Chest Xray shows hyperinflation and flattening of diaphragm
• PFTs
 – decreased FEV1 and VC
 – increased residual volume due to air trapping

51 Medical Management of COPD
• Oxygen therapy PaO2>55-60
 – minimal amount in clients with chronic hypercarbia to maintain hypoxic drive
• Bronchodilator therapy
 – inhaled prep preferred to minimize systemic effect
 – atrovent is preferred adjunct to beta agonists
• Anti-inflammatories
 – corticosteroids

52 Medical Management of COPD continues…..
• Mucolytics
 – acetylcysteine (mucomist) inhaler
 – guaifenesin elixir
 • cough suppressant are avoided
• Hydration up to 3 liters/day
• Smoking cessation
• Nutrition recommendations to prevent malnutrition

53 Medical Management of COPD still continues……..
• Antibiotics in acute exacerbations
• Pulmonary rehabilitation
• Prevention of respiratory infection
• Surgical interventions
 – Lung reduction surgery
 – lung transplantation
 • in case of \(\alpha_1 \)-antitrypsin (\(\alpha_1 \)-antiprotease inhibitor) deficiency

54 Nursing Diagnoses/Collaborative Problems
• CAN YOU IDENTIFY THE DEFINING CHARACTERISTICS?
 • Impaired gas exchange
 • Ineffective breathing pattern
 • Ineffective airway clearance
 • Altered nutrition
 • Anxiety
 • Activity intolerance
 • High risk for infection

55 Nursing Diagnoses/Collaborative Problems
• Can you identify the defining characteristics/signs and symptoms when present?
 • Potential for: Hypoxemia
• Potential for: Right-sided heart failure
• Potential for: Pneumothorax
• Potential for: Respiratory acidosis
• Risk for ineffective therapeutic regimen management (See table 30-11 page 552)

56 Nursing Interventions for COPD Clients (Table 33-9, pg. 601)
• Can you implement a plan?
 – Airway management
 – Cough enhancement
 – Oxygen therapy
 – Energy management

57 Test your nursing knowledge. What would you do if...?
• Your client becomes anxious?
• Chest is hyperresonant to percussion on right side?
• Client eats only 20% of meals?
• Neck veins are distended and dependent edema is noted?
• pH is 7.36, PCO2 is 52, HCO3 29 with PaO2 of 51?
• Client is unable to participate in breathing exercises?
• Asks you “what are pursed lip breathing exercises anyway?”
• Your client has ten visitors in the room while he or she is trying to eat lunch and they insist on seeing the dressing change to a wound immediately?

58 Discharge Planning: Oxygen therapy at home
• Patient teaching
 – electrical hazards
 – smoking hazards
 – safety strategies with portable oxygen
 – maintenance of mucosal integrity
 • identify risks of petroleum based lubricants