Cardiovascular System: Blood (Chapter 19)

Lecture Materials for

Amy Warenta Czura, Ph.D.
Suffolk County Community College
Eastern Campus

Primary Sources for figures and content:

Cardiovascular system = blood, heart and blood vessels (anatomical division)
Circulatory system = cardiovascular system and lymphatic system (clinical)

Blood – a fluid connective tissue

Functions of blood:
1. Distribution
 a. deliver O₂ and nutrients to cells
 b. remove metabolic waste
 c. transport hormones to targets
2. Regulation
 a. maintain body temp →
 distribute heat from muscles
 b. maintain pH
 c. maintain fluid volume
3. Protection
 a. restrict loss at injury (clotting)
 b. prevent infection (leukocytes)
Characteristics of blood
- pH 7.4
- temperature 38°C / 100.4°F
- total volume 4-6 L (9-11 pints)

Fun fact:

to estimate your own blood volume:
7% body weight in kg = blood in L
(1 kg = 2.2 lb)
(weight lb / 2.2) X 0.07
Composition of blood:

(CT = cells in matrix)

Blood matrix = plasma: ~55%
water + soluble proteins

Blood cells = formed elements:
- Erythrocytes: ~45%
 transport O_2
- Leukocytes: < 1%
defense
- Platelets: < 1%
cell fragments, for clotting
Plasma:
- 90% water + dissolved solutes (nutrients, gasses, hormones, wastes, ions, proteins)

Plasma Proteins (~8% of total plasma)
- 7.6g/100ml
 (5X more proteins than interstitial fluid)
- These proteins remain in plasma, not absorbed by cells for nutrients

1. Albumins (60% of plasma proteins)
 Produced by the liver
 Functions:
 - act as pH buffer for blood
 - contribute to osmotic pressure of blood (keep water in blood)
 - transport fatty acids and hormones
2. Globulins (35% of plasma proteins)
 A. Gamma globulins / Antibodies / Immunoglobulins:
 - produced by plasma cells in the lymphatic system
 - function to attack foreign substances
 B. Alpha and Beta globulins / Transport globulins:
 - produced by the liver
 - function to transport small or insoluble compounds to prevent filtration loss by kidney

3. Clotting Factors (4% of plasma proteins)
 - produced by the liver
 - 11 total, fibrinogen most abundant
 - all function to promote or form a clot
 (serum = plasma – fibrinogen)
4. Other (1% of plasma proteins)
 - From liver:
 - metabolic enzymes and antibacterial proteins
 - From endocrine organs:
 - hormones

liver disease can lead to a variety of blood disorders (many plasma proteins produced by liver)
Hematopoiesis
blood cell production
-all formed elements arise from the same progenitor cell: the hemocytoblast, located in the red bone marrow (follow lineages on handout)
Erythrocytes (RBCs)
-99.9% of the formed elements of blood
-1/3 of total body cells
(average human = ~75 trillion cells)
-Average RBC count = 4.2-6.3 million/µl

Hematocrit = % of whole blood occupied by formed elements
(mostly erythrocytes: 99.9%)
 male = 46%
 female = 42%

Polycythemia = excess erythrocytes but normal blood volume, usually due to bone marrow cancer
 ↑ hematocrit = ↑ viscosity = ↑ heart strain and stroke
Erythrocyte structure
- biconcave disc
- 7.8µm diameter
- large surface area for gas exchange
- can fold and stack to pass narrow vessels

- mature erythrocytes lack all organelles
 - no division, no repair
 - low metabolic demands
 - life span < 120 days
- cell is 97% hemoglobin protein (red color)
- hemoglobin transports O₂ and some CO₂
Hemoglobin Molecule (Hb)
-2 α chains
-2 β chains
-each chain has one heme group with iron in center:
 iron binds O₂
Oxyhemoglobin = O₂ bound, bright red
Deoxyhemoglobin = no O₂, burgundy
-fetal Hb binds O₂ more strongly than adult:
 insures transfer of O₂ from mom
280million Hb/ RBC X
 4 hemes/Hb, each heme binds 1 O₂ =
 >1 billion O₂ per RBC
 (25 trillion RBC per person)
-most O₂ is carried in blood bound to Hb
 (some in plasma)
-only 20% CO₂ carried by Hb:
 Carbaminohemoglobin - CO₂ bound to amino acids on α /β chains, not on heme
-when plasma O₂ is low, Hb releases O₂ and binds CO₂
-at lungs CO₂ exchanged for O₂ by diffusion

Anemia = O₂ starvation, due to:

1. insufficient # RBCs
2. low Hb
3. abnormal Hb

Thalassemia = inability to produce α or β chains, slow RBC production, cells fragile and short lived

Sickle-cell anemia = single amino acid mutation in β chain

high O₂, cells normal

low O₂, Hb misfolds, RBCs deform into crescent shape: fragile, blocks capillaries
Erythropoiesis = red blood cell formation
-2 million/ sec (1 oz new blood per day)
-occurs in reticular CT in red bone marrow, in spongy bone

1. Hemocytoblast differentiates into myeloid stem cell
2. followed by many stages of differentiation, all involve ↑ protein synthesis
3. cell fills with Hb, loses organelles (nucleus too)
4. 3-5 days reticulocytes are formed (Hb + some ribosomes), released into blood, 1-2% of total blood RBCs
5. 2 days in circulation lose ribosomes (no more protein synthesis) = mature erythrocyte
- Vitamin B12 necessary for erythropoiesis for stem cell division
 Lack B12 = pernicious anemia

Erythropoietin (EPO)
- hormone, released by kidney during hypoxia (low O_2)
- stimulate RBC production:
 - \uparrow cell division rates (up to 30 million/sec)
 - \uparrow Hb synthesis = \downarrow maturation time
“blood doping” = injecting EPO or RBCs to enhance athletic performance: \uparrow O_2 to tissues, but also \uparrow hematocrit/viscosity = clots, stroke, heart strain
Kidney failure often = low RBCs due to lack of EPO

Erythrocyte Recycling
- old/damaged RBCs removed by phagocytes in spleen
- replaced by new, ~1% turnover per day
-phagocytosed cells broken down:
 -protein → amino acids, released for use
 -heme →
 1. iron removed, bound to transferrin in blood for recycling back to bone marrow (new RBCs)
 2. pigment → biliverdin (green)
 biliverdin → bilirubin (yellow-green), released into blood, filtered by liver, excreted in bile

Jaundice = failure of bilirubin to be excreted in bile, collects in peripheral tissues → yellow skin & eyes

3. in gut, bilirubin → urobilins (yellow) & stercobilins (brown) via bacteria
 urobilins absorbed, excreted in urine
 stercobilins remain in feces

Hemolysis = RBC rupture in blood →

Hemoglobinuria = red/brown urine due to kidney filtering intact α & β chains of hemoglobin
Blood Types
-all cell membranes have surface antigens: indicate “self”
 (antigen = substance that triggers immune response)
-RBCs have 50+, 3 important for transfusion: agglutinogens: A, B, D

Type A blood = surface antigen A (40%)
Type B blood = surface antigen B (10%)
Type AB blood = both A + B antigens (4%)
Type O blood = neither A nor B antigen (46%)
Rh+ = surface antigen D (85%)
Rh- = no D antigen (15%)
-at birth, blood contains antibodies against A or B antigens that are not present
-the antibodies will cause agglutination (clumping) of antigen (agglutinogen)
Type A blood = antibodies against B antigen
Type B blood = antibodies against A antigen
Type AB blood = neither antibody
Type O blood = antibodies against both A & B
-antibodies against D antigen only form upon exposure and are small enough to cross placenta

Hemolytic disease of the newborn/
Erythroblastosis fetalis:

Rh- mom pregnant with Rh+ baby,
gets exposed to D antigen during birth,
makes anti-D antibodies,
pregnant with second Rh+ baby,
antibodies cross placenta,
causes agglutination and lysis of fetal
RBCs = anemia and death

Prevention: treat mom with RhoCAM
during first birth to prevent antibody formation

-blood typing always done before transfusion
to prevent body wide agglutination

-if blood type unknown: type O- = universal donor: it lacks all 3 agglutinogens (A, B, D) so no risk of agglutination by antibodies in anyone
Leukocytes (WBCs)
- < 1% total blood volume
- 5 types
- functions:
 - defend against pathogens
 - remove toxins and wastes
 - remove abnormal/damaged cells
- all have nuclei & organelles, no hemoglobin
- 6000-9000 leukocytes/µl blood
- use blood to travel to tissues, not permanent residents of blood
- characteristics:
 1. ameboid movement
 2. diapedesis (move out of blood):
 a. margination = adhere to vessel
 b. emigration = pass between endothelial cells
3. exhibit positive chemotaxis
4. phagocytosis (3 of 5) engulf pathogens and debris

Types of Leukocytes:
(on handout)
Granulocytes vs. Agranulocytes
Neutrophil (a.k.a PMNs) (polymorphonuclear leukocytes)

- Non-specific defense
- Phagocytic
- 50-70% of WBCs
- 3-5 lobed nucleus
- 12µm diameter
- Granules contain enzymes and defensins
- Very mobile: first at injury
- Life span less than 10h

Functions:
- Respiratory burst: \(\text{H}_2\text{O}_2 \) & \(\text{O}_2^- \), kill phagocytosed things
- Degranulation: release defensins, lyse bacteria
- Prostaglandins: induce inflammation to stop spread of injury
- Leukotrienes: attract phagocytes
Eosinophil

- Non-specific defense
- Phagocytic
- 2-4% of WBCs
- Bilobed nucleus
- 12 µm diameter
- Granules contain toxins

Life span 9 d

Functions:
- Phagocytosis of antibody covered objects
- Defense against parasites: exocytose toxins on large pathogens
- Reduce inflammation: anti-inflammatory chemicals/enzymes
Basophil

In tissues = Mast cell

- Non-specific defense
- Not phagocytic
- Less than 1% of WBCs
- “U” shaped nucleus
- 8-10µm diameter
- Granules contain
 Histamine: dilate blood vessels
 Heparin: prevents clotting
- Life span 9 d

Functions:
- Inflammation
- Allergic response (via histamine)
Monocyte

In tissues = Macrophage

- Non-specific defense
- Phagocytic
- 2-8% of WBCs
- Kidney shaped nucleus
- 15µm + diameter
- Circulate 24 h, exit to tissues = macrophage
- Life span several months

Functions:
- Phagocytosis: virus & bacteria
- Attract phagocytes
- Attract fibroblasts for scar formation
- Activate lymphocytes: to mount immune response
Lymphocyte

- Immune response
- 20-30% of WBCs
- Large round nucleus
- 5-17 µm diameter
- Migratory between blood and tissues
- Most in lymphatic system
- Life span days to lifetime

Function depends on type, 3 types:

B cells: humoral immunity (secrete antibodies)
T cells: cell-mediated immunity (attack foreign cells)
NK cells: immune surveillance (destroy abnormal tissue)
Leukopoiesis = WBC production
Myeloid stem cells → Basophils, Eosinophils, Neutrophils, Macrophages as directed by specific colony stimulating factors (CSF) produced by Macrophages and T cells (different CSF (hormone) results in different cell)
Lymphoid stem cells \rightarrow Lymphocytes
production involves immune response
Leukopenia = too few WBCs
Leukocytosis = excessive WBCs in normal blood volume

normal infection ↑ WBCs from 7,500 to 11,000/µl
>100,000/µl → leukemia, cancerous stem cells, WBCs produced are immature and abnormal

Infectious Mononucleosis:
Epstein Bar virus infection causes production of excess agranulocytes that are abnormal, self limiting
Platelets (Thrombocytes)
-flattened discs, 2-4µm diameter, 1µm thick
-cell fragments, no nucleus
-constantly replaced, 9-12 d in circulation, then phagocytosed by cells in spleen
-350,000 / µl blood
-1/3 of total platelets held in reserve in spleen, mobilized for crisis

Functions:
-transport clotting chemicals, release when activated
-form patch (platelet plug) over damaged vessel
-contract wound after clotting (contain actin and myosin)
Thrombopoiesis = platelet production
- Megakaryocyte in bone marrow breaks off membrane enclosed cytoplasm to blood
- Each megakaryocyte can produce ~4000 platelets
- Induced by thrombopoietin from kidney and CSF from leukocytes

Thrombocytopenia = too few platelets < 80,000/µl, results in bleeding and petechia

Thrombocytosis = too many platelets > 1 million/µl, due to cancer or infection, clotting risk

Hemostasis
(on handout)
Hemostasis

Vascular Phase

Vessel lumen

Endothelium

Basal lamina

Vessel wall

Concentric smooth muscle

Platelet adhesion

Platelet aggregation

Release of chemicals (ADP, thromboxane A₂, Ca²⁺, platelet factors)

Blood

Platelet plug

Contracted smooth muscle cells

Cut edge of vessel wall

Interstitial fluid

Platelet Phase
(a) The coagulation phase

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

(b) A blood clot

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.
Bleeding Disorders:

Thrombosis = clotting in undamaged vessels, slow or prevent flow (intrinsic pathway)
Embolus = free floating thrombosis, blocks small vessels → tissue damage, heart attack, stroke

Disseminated Intravascular Coagulation:
 widespread clotting followed by systemic bleeding, rare: complication of pregnancy, septicemia or mismatched transfusion

Hemophilia = inadequate production of clotting factors
 Type A → Factor VIII (X linked)
 Type B → Factor IX
 Type C → Factor XI
Other blood disorders:

Dietary:
- Calcium required for clotting cascade
- Vitamin K required for liver to synthesize clotting factors
- Iron required for hemoglobin production
- Vitamin B12 required for RBC stem cell division

Organ health:
- Impaired liver = ↓ clotting (↓ clotting factors)
- Impaired kidney = ↓ RBC (↓ EPO)
 ↓ platelets (↓ thrombopoietin)