Chapter 1

An Introduction to the Human Body

Chapter Overview

• Define Anatomy and Physiology
• Levels of Organization
• Characteristics of Living Things
• Homeostasis
• Anatomical Terminology

Anatomy

• Describes the structures of the body:
 – what they are made of
 – where they are located
 – associated structures

Physiology

• Is the study of:
 – functions of anatomical structures
 – individual and cooperative functions
• All physiological functions are performed by specific anatomical structures
Anatomy Subdisciplines

- Embryology
- Developmental anatomy
- Histology
- Surface anatomy
- Gross anatomy
- Systemic anatomy
- Regional anatomy
- Radiographic anatomy
- Cytology
- Pathological anatomy

Physiology Subdisciplines

- Neurophysiology
- Endocrinology
- Cardiovascular physiology
- Immunology
- Respiratory physiology
- Renal physiology
- Exercise physiology
- Cell physiology
- Pathophysiology
- Reproductive physiology

Levels of Organization

- The chemical level
 - Atoms: the smallest units of matter that participate in chemical reactions
 - Molecules: two or more atoms joined together
- Cells
 - the basic structural and functional units of an organism.
- Tissues
 - groups of similar cells and the substances surrounding them that perform certain special functions.
Levels of Organization

- **Tissues**
 - groups of similar cells and the substances surrounding them that perform certain special functions.
- **Organs**
 - structures of definite form that are composed of two or more different tissues and have specific functions.
- **Systems**
 - related organs that have a common function.
- The human organism
 - any living individual.

Organ Systems

- The body is divided into 11 organ systems:
 - integumentary, skeletal, muscular, nervous, endocrine, cardiovascular, lymphatic, respiratory, urinary, digestive, and reproductive
- All organ systems work together
- Many organs work in more than one organ system

Clinical Application

Three noninvasive techniques used to assess aspects of body structure and function include:

- palpation
 - The examiner feels body surfaces with the hands; an example would be pulse and heart rate determination.
- auscultation
 - The examiner listens to body sounds to evaluate the functioning of certain organs, as in listening to the lungs or heart.
- percussion
 - The examiner taps on the body surface with the fingertips and listens to the resulting echo.

Characteristics of Living Organisms

- All living things have certain characteristics that distinguish them from nonliving things.

 Metabolism
 Responsiveness
 Movement
 Growth
 Differentiation
 Reproduction
Basic Life Processes

All living things have certain characteristics that distinguish them from nonliving things:

- **Metabolism** is the sum of all chemical processes that occur in the body, including catabolism and anabolism.
- **Responsiveness** is the ability to detect and respond to changes in the external or internal environment.
- **Movement** includes motion of the whole body, individual organs, single cells, or even organelles inside cells.

• **Growth** refers to an increase in size and complexity, due to an increase in the number of cells, size of cells, or both.
• **Differentiation** is the change in a cell from an unspecialized state to a specialized state.
• **Reproduction** refers either to the formation of new cells for growth, repair, or replacement, or the production of a new individual.

Homeostasis

- **Homeostasis**: All body systems working together to maintain a stable internal environment
- Systems respond to external and internal changes to function within a normal range (body temperature, blood pressure, blood glucose)
- Failure to function within a normal range results in disease or death

Control of Homeostasis

- **Autoregulation** (intrinsic):
 – automatic response in a cell, tissue, or organ
- **Extrinsic regulation**:
 – responses controlled by nervous and endocrine systems
Components of Feedback Loop

- **Receptor**
 - monitors a controlled condition
 - receives the stimulus
- **Control center**
 - processes the signal and sends instructions
- **Effector**
 - carries out instructions

Feedback Systems

- If a response reverses the original stimulus, the system is a negative feedback system.
- If a response enhances the original stimulus, the system is a positive feedback system.

Homeostasis of Blood Pressure

- Controlled by negative feedback system
- Pressure receptors in arteries detect an increase in BP
- Brain receives input and then signals heart and blood vessels
- Heart rate slows and arterioles dilate (increase in diameter)
- BP returns to normal

Positive Feedback during Childbirth

- Stretch receptors in walls of the uterus send signals to the brain
- Brain releases a hormone (oxytocin) into bloodstream
- Uterine smooth muscle contracts more forcefully
- More stretch ➔ more hormone ➔ more contraction ➔ etc.
- The cycle ends with birth of the baby & decrease in stretch
KEY CONCEPT

- Homeostasis is a state of equilibrium:
 - opposing forces are in balance
- Physiological systems work to restore balance
- Failure results in disease or death
- Aging is characterized by a progressive decline in the body’s responses to restore homeostasis

KEY CONCEPT

- Anatomical position:
 - hands at sides, palms forward
- Supine:
 - lying down, face up
- Prone:
 - lying down, face down

BASIC ANATOMICAL TERMINOLOGY

- Anatomical position
- Regions of the body
- Anatomical planes, sections and directional terms

Regional Names

- Clinical terminology is based on a Greek or Latin root word
Directional Terms
- Deep vs. superficial
- Lateral:
 - side view
- Frontal:
 - front view
- Superior:
 - top view
- Anatomical direction:
 - refers to the patient’s left or right

Planes and Sections
- Plane:
 - a 3-dimensional axis
- Section:
 - a slice parallel to a plane

Planes and Sections
- Sagittal
 - Midsagittal
 - Parasagittal
- Frontal or coronal
- Transverse (cross-sectional, horizontal)
- Oblique
Planes and Sections of the Brain
(3-D anatomical relationships revealed)

- Horizontal Plane
- Frontal Plane
- Midsagittal Plane

Body Cavities

- Body cavities are spaces within the body that help protect, separate, and support internal organs.

Dorsal Body Cavity

- 2 subdivisions
 - cranial cavity
 - holds the brain
 - vertebral or spinal cavity
 - contains the spinal cord
- Meninges line dorsal body cavity

Ventral Body Cavity

- 2 subdivisions
 - thoracic cavity above diaphragm
 - abdominopelvic cavity below diaphragm
- Diaphragm = large, dome-shaped muscle
- Organs called viscera
- Organs covered with serous membrane
Thoracic Cavity

- The thoracic cavity contains two pleural cavities, and the mediastinum, which includes the pericardial cavity.
 - The pleural cavities enclose the lungs.
 - The pericardial cavity surrounds the heart.
 - The mediastinum is a partition between the lungs that contains all other thoracic organs (heart and great vessels, esophagus, trachea, thymus).

Abdominopelvic Cavity

- The abdominopelvic cavity is divided into a superior abdominal and an inferior pelvic cavity.
 - Viscera of the abdominal cavity include the: stomach, spleen, pancreas, liver, gallbladder, small intestine, and most of the large intestine.
 - Viscera of the pelvic cavity include the: urinary bladder, portions of the large intestine and internal reproductive structures.

Serous Membranes

- Thin slippery membrane lines body cavities not open to the outside
 - parietal layer lines walls of cavities
 - visceral layer covers viscera within the cavities
- Serous fluid reduces friction
Serous Membranes

- The pleural membrane surrounds the lungs
- The pericardium is the serous membrane of the pericardial cavity
- The peritoneum is the serous membrane of the abdominal cavity

Quadrants and Regions (1 of 3)

- 4 abdominopelvic quadrants around umbilicus

Quadrants and Regions (2 of 3)

- 9 abdominopelvic regions

Quadrants and Regions (3 of 3)

- Internal organs associated with abdominopelvic regions
MEDICAL IMAGING

• A specialized branch of anatomy and physiology that is essential for the diagnosis of many disorders.

Conventional Radiography (X ray)

• A single burst of xrays
• Produces 2-D image on film
• Poor resolution of soft tissues
• Major use is osteology

Computed Tomography (CT Scan)

• Moving x-ray beam
• Image produced on a video monitor of a cross-section through body
• Computer generated image reveals more soft tissue detail
• Multiple scans used to build 3D views

Ultrasound (US)

• High-frequency sound waves emitted by hand-held device
• Safe, noninvasive & painless
• Image or sonogram is displayed on video monitor
• Used for fetal ultrasound and examination of pelvic & abdominal organs, heart and blood flow through blood vessels
Magnetic Resonance Imaging (MRI)

- Body exposed to high-energy magnetic field
- Can not use on patient with metal in their body
- Reveals fine detail within soft tissues